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We review a steady spherical accretion of perfect fluids and show the
effects of selfgravitation of the gas. The mass accretion rate is small either
when most of the mass of the system is located in the center and in the
contrasting case when the mass of the center is small compared to the mass
of the accreting fluid. The maximal value of the accretion rate corresponds
to the mass of the central black hole being equal 2/3 of the total mass. The
main focus is on the stability of selfgravitating flows. While the stability of
the accretion in the test fluid case can be proven analytically, the regime
of the massive, selfgravitating fluid requires a numerical analysis. Results
obtained in the Newtonian approximation show stability against small and
large amplitude perturbations.

PACS numbers: 04.40.–b, 97.10.Gz

1. Introduction

The analysis of spherical accretion starts with the Newtonian investiga-
tion of Bondi [2]. This model has been promoted to the relativistic context
by Michel [10] within the so-called test-fluid approximation — the motion
of the fluid was considered in the fixed Schwarzschild background. The
first investigation of the effects of selfgravitation of the accreting fluid was
presented in the paper of Malec [9]; the more detailed analysis accompa-
nied with direct numerical solutions has been published later by Karkowski
et al. [4].

It turns out that selfgravity of accreting fluids can play an important
role in the entire picture. Strictly speaking, there exists an upper bound
on the mass accretion rate due to selfgravity. For a given accretion rate
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two quasistationary solutions appear: one corresponding to the case with a
massive black hole and small amount of the accreting fluid, and the second
describing an opposite case, where the mass of the black hole can be small
compared to the mass of the fluid. This picture extends to systems emitting
radiation. As expected, there appear two accreting regimes in the thin gas
approximation [5].

Apart from astrophysical applications one can think of selfgravitating,
steadily accreting solutions as providing tests for complex, general-relativis-
tic, hydrodynamical codes. These solutions can be obtained by solving
relatively simple sets of ordinary differential equations and many of their
properties can be proven using analytical means.

In this talk we will discuss briefly these analytical results and then con-
centrate on the stability of selfgravitating, spherical accretion flows. This
issue has been investigated numerically in the Newtonian approximation
showing stability even in the regime characterised by a very large mass of
the accreting fluid. Work is in progress to extend these simulations to the
general-relativistic case.

2. Basic equations and definitions

A general, spherically symmetric space-time can be described by a line
element

ds2 = −N2dt2 + αdr2 + R2
(

dθ2 + sin2 θdφ2
)

,

where lapse N , α and aerial radius R are functions of a coordinate radius r
and an asymptotic time variable t.

Let us foliate this spacetime by the slices of a fixed time t. The non-
zero elements of the second fundamental form of such a slice read Kr

r =

∂tα/(2Nα), Kθ
θ = Kφ

φ = ∂tR/(NR) and thus TrK = N−1∂t ln
(√

αR2
)

.
Similarly the trace of the second fundamental form of a two-sphere of a
constant radius r embedded in a slice of constant time t is given by k =
2∂rR/(R

√
α).

We will deal with the perfect fluid, i.e., one governed by the energy-
momentum tensor of the form

T µν = (p + ̺)uµuν + pgµν ,

where uµ denotes the four-velocity of the fluid, p is the pressure and ̺ the
energy density.

It turns out that the best choice of coordinates for the description of
spherically accreting fluid is that of comoving ones, i.e., such, where ur =
uθ = uφ = 0 (for more formal, geometric way of imposing comoving gauge
consult [9]).
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We will consider a ball of fluid that is falling onto a central black hole.
Since we take into account the selfgravitation of the fluid, this ball has
to be compact and have finite total mass (asymptotic mass for the entire
spacetime). In the Bondi’s or Michel’s model of test-fluid accretion this
cloud can formally extend to infinity. In our case we have to consider some
gluing of the outer cloud boundary with the exterior Schwarzschild solution.
For traditional reasons the quantities referring to the outer boundary, like
aerial radius or energy density, will be still denoted with the ∞ subscript
(e.g. R∞, ̺∞).

Let us now define the following functions: U = ∂tR/N = R(TrK−Kr
r )/2

playing the role of velocity and m(R) = mtot − 4π
∫ R∞

R
dR′R′2̺ being the

quasilocal mass. Here mtot stands for the total (asymptotic) mass of the
system. The mass accretion rate is defined as ṁ = (∂t−(∂tR)∂R)m(R). This
can be understood as the time derivative of the mass function computed in
the coordinate system obtained by the transformation (t, r) 7→ (t′, r′), where
t′ = t, r′ = R(t, r).

We will further assume that the flow of fluid is steady — all hydrody-
namic quantities and the mass accretion rate should be constant at a fixed
aerial radius, i.e., (∂t − (∂tR)∂R)X = 0, X = ̺, U . . . . One should point
here that the accretion must cause a slight growth of the central mass and,
consequently, a change of some geometric quantities. Thus the notion of
the steady accretion can only be approximate. In order not to change the
quasilocal mass m(R) too significantly the mass accretion rate should be
small and the time scale short. It turns out that these conditions can indeed
be satisfied.

Under the above assumptions the whole system can be described by the
following set of equations: The lapse equation

N =
kR

k∞R∞

exp



−16π

R∞
∫

R

(p + ̺)dR′

k2R′



 ,

the Hamiltonian constraint equation

Rk =

√

1 − 2m(R)

R
+ U2

and two equations expressing the conservation of the baryonic current nuµ

and the energy-momentum tensor T µν respectively

U =
A

R2n
, N =

Bn

̺ + p
.

Here n denotes the baryonic density, A and B stand for integration constants.



3938 P. Mach

To close the above system an equation of state should be added. We have
been working with polytropic equations of state of the form p = KnΓ , where
K and Γ are constants as well as with polytropes given by p = K̺Γ . These
are essentially distinct equations of state, both present in astrophysical and
relativistic literature. Many of the following results can be also generalised
to barotropic equation of state, where p can be an almost arbitrary function
of density [6].

3. Sonic point

The sonic point is defined as a location, where |U | = kRa/2. Here
a denotes the local speed of sound given by the formula a2 = dp/d̺. In
the Newtonian limit this definition coincides with the standard condition
|U | = a; in both theories (Newtonian and relativistic) precise information
about parameters of the sonic point can provide important characteristics
of the accretion flow. To give an example, let us restrict for the moment to
the test-fluid approximation (i.e. Michel’s model). The condition for that
case can be written as

4π

∫

R>2mtot

dR′R′2̺ ≪ mtot .

If we additionally assume polytropic equation of state of the form p = KnΓ ,
then precisely one sonic point exists and the value of the local speed of sound
at this point reads1

a2
∗

=
1

9

{

6Γ − 7 + 2(3Γ − 2) cos

[

π

3
+

1

3
arccos

{

1

2(3Γ − 2)3

×
(

54Γ 3 − 351Γ 2 − 558Γ + 486(Γ − 1)a2
∞

− 243a4
∞

− 259
)

}]}

.

The symbol with an asterisk has been used here to denote a value referring
to the sonic point (this convention will be followed in the rest of the paper).
Now, accretion rate can be generally written as

ṁ = −4πNR2U(p + ̺) = −4πAB .

Evaluating this expression at the sonic point we can finally arrive at the
formula

ṁ = πn∞m2
tot

Γ − 1

Γ − 1 − a2
∞

(

1 + 3a2
∗

a2
∗

)
3

2

(

a2
∗

a2
∞

Γ − 1 − a2
∞

Γ − 1 − a2
∗

)
1

Γ−1

,

1 It is a curious fact connected with the test-fluid accretion model and the equation of

state p = KnΓ , that the speed of sound at the sonic point can be expressed by an

exact, analytical formula. It is not so in the p = K̺Γ case.



Selfgravitation and Stability in Spherical Accretion 3939

which, together with the expression for a2
∗
, gives the accretion rate solely

in terms of the asymptotic density n∞ and the asymptotic speed of sound
a∞. This result can be also used to estimate ṁ for a more general class of
barotropic equations of state.

4. Selfgravitating versus test-fluid flow

The effects of selfgravitation of the accreting fluid are best seen when
contrasted with the simplified test-fluid model. Concerning the quantities
characterising the sonic point, one can show that some of them remain the
same in both models but some differ. This result can be formulated as
follows [4, 7].

Consider two models with the same polytropic equation of state, say
p = K̺Γ and same asymptotic data R∞, a2

∞
, mtot = m(R∞). One of them

should be computed taking into account selfgravity of the accreting fluid
while for the second simplified formulae of the test-fluid approximation are
used. For these two models the following sonic point parameters are the
same: a2

∗
, U∗ and m(R∗)/R∗. The masses contained within the sonic point

m(R∗) differ.
It can also be shown that m(R∗) changes linearly with ̺∞, i.e., m(R∗) =

mtot−γ̺∞ [4]. The constant γ appearing here is determined practically only
by R∞. The accretion rate can be written as

ṁ = −4πm(R∗)
2̺∞

R2
∗

m(R∗)2
U∗

(

a∗
a∞

) 2

Γ−1

(

1 +
a2
∗

Γ

)

.

Here the whole dependence on ̺∞ is contained in the single term m(R∗)
2̺∞.

One can show [4] that there exist a maximum of ṁ at m(R∗) = 2mtot/3 and
ṁ → 0 for ̺∞ → 0 and m(R∗)/mtot → 0. The quantity m(R∗) is almost
equal to the mass of the central black hole mBH — only a very small amount
of mass is contained in the shell between apparent horizon of the black hole
and the sonic point sphere.

A numerical example confirming these analytical results can be seen on
Fig. 1. Clearly, for a given accretion rate and fixed asymptotic mass there
exist two different models with different mass contained in the fluid zone
mfluid = mtot − mBH. This also means that estimating the accretion rate
basing on the test-fluid formulae may become highly inaccurate.
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ṁ
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2.0 · 10
−18

0.0 · 10
0

Fig. 1. The dependence of the accretion rate ṁ on the ratio mfluid/mtot, where
mfluid denotes the mass contained in the fluid region.

5. Stability of the selfgravitating accretion flows

The stability of Bondi accretion had been first investigated by Balazs [1].
His Lagrangian approach was in principle correct but inconclusive, because
of a too restrictive understanding of linearised stability. The first proof of
stability of spherically symmetric accretion in the test-fluid approximation
was given by Moncrief [11] both for Newtonian and relativistic case. The
Eulerian version of method used by Moncrief was especially designed to work
with test-fluid cases. It is, however, possible to reproduce his result using
Lagrangian approach as well. To demonstrate this, let us restrict ourselves
to technically simpler, Newtonian case.

The key equations governing the flow can be written as

∂tU + U∂RU = −∂Rp

̺
− m(R)

R2
, (1)

∂t̺ = − 1

R2
∂R

(

R2̺U
)

. (2)

Here U stands for radial velocity component while all other quantities retain
their hitherto meaning. We will also distinguish between Eulerian coordinate
R and comoving radius r as before.

Let us introduce ζ(r, t) = ∆R(r, t) being deviation from the particle
position in the unperturbed flow. The perturbation of the velocity reads
∆U = ∂L

t = (∂t + U∂R)ζ, where the symbol ∂L
t = ∂t + U∂R denotes the
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derivative with respect to the Lagrangian time. Perturbation of the density

∆̺ = −̺

(

2ζ

R
+ ∂Rζ

)

follows from the continuity equation (2) (it can be also obtained immediately
from ∆m(R(r = const.)) = 0).

The equation for ζ can be derived from equation (1)

(

∂L
t

)2
ζ =

2m(R)ζ

R3
+

1

̺
∂R

(

a2̺

(

∂Rζ +
2ζ

R

))

− 2ζ

̺
∂Rp . (3)

Balazs tried to find solutions of (3) in the form ζ(R(r), t) = exp(iωt)ζ̃(R(r)),

where ω2 is positive and modulus ζ̃(R(r)) is time independent. Unfortu-
nately this strategy fails. Instead, one can define an energy

E =

∫

V

dV ̺

(

1

2
(∂tζ)2 +

1

2
(∂Rζ)2

(

a2 − U2
)

+
ζ2

R2

(

a2 − m

R
− R∂Ra2

)

)

,

where V is an annulus between R∗ and R∞. For small perturbations (we
are dealing with linearised theory) it suffices to consider the region outside
sonic radius as all perturbations in the supersonic zone should be eventually
washed out by the central black hole.

In order to show stability we will compute the time derivative of E hoping
for ∂t ≤ 0. If additionally E were proven to be positive definite, we could
exclude long-term exponential growth of the linear modes ζ.

The first task can be accomplished easily. Time derivative of the energy
E can be computed to yield

∂tE = −
∫

V

dV ζ2∂tm(R)

R3

+ 4π
[

R2̺
(

∂tζ∂Rζ
(

a2 − U2
)

− U (∂tζ)2
)]R∞

R∗

. (4)

A careful inspection of the boundary terms appearing on the right-hand side
of (4) leads to the conclusion that indeed ∂tE ≤ 0.

The question of the positivity of the energy E is slightly more subtle.
The identity

̺
(

a2 − m

R
− R∂Ra2

)

= − ∂R

[

̺R
(

a2 − m

2R

)]

+
2̺

a2 − U2

(

a2 − m

2R

)2

− 2πR2̺
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can be used to show that

E = Ẽ −
[

4πRζ2̺
(

a2 − m

2R

)]R∞

R∗

, (5)

where we have introduced

Ẽ =
1

2

∫

V

dV
(

X2 + Y 2
)

− 2π

∫

V

dV ζ2̺2 . (6)

Symbols X and Y are used here to abbreviate the following expressions

X =
√

̺∂tζ ,

Y =
√

̺

(

2a2R − m

R2
√

a2 − U2
ζ +

√

a2 − U2∂Rζ

)

.

Although the boundary terms in (5) are nonnegative, the last term in (6) is
strictly negative. It appears solely due to the selfgravity of the fluid. Thus,
as long as we are restricting ourselves to the test-fluid case, E becomes
positive definite and, in accordance with Moncrief, we conclude that the
flow is stable. The selfgravitating case, however, remains still open.

The reader interested in the details of the above analysis can consult [7].

6. Numerical analysis of stability

The problems signalled in the preceding section led us to numerical in-
vestigations of the stability of selfgravitating accretion. Preliminary results
that we present here suggest stability also in the selfgravitating regime, de-
spite difficulties encountered when trying to solve the problem by analytical
means.

In order to investigate the stability of the selfgravitating accretion we
have restricted ourselves to the Newtonian case and adapted the Prometheus
code by B. Fryxell and E. Mueller to our purposes. Prometheus is a general
hydrodynamical code based on the modern high-resolution, shock-capturing
PPM scheme which has originated in the work of Collela and Woodward [3].
It has been extensively used for simulating such astrophysical phenomena
as supernova explosions; it is capable of simulating selfgravitating flows in
both spherically and axially symmetric cases.

As the initial data we have used solutions to the Newtonian equations
for the steady flow that include selfgravitation of the accreting fluid. An
equation of state was a polytrope p = K̺Γ . Some point mass was assumed
to exist at R = 0 to imitate the central black hole. At the inner boundary the
outflow conditions were assumed, while the distant outer boundary was kept
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fixed using values obtained from the initial solution (inflow boundary). The
latter turned out to be necessary — setting the numerical outflow conditions
also at the outer boundary can lead to instabilities even in the test-fluid case.

Such solution can be evolved in a stable way leading to small inaccuracies
at the level of the code precision. In order to investigate the stability of the
flow, an initial perturbation was applied to the velocity field.

This can be done in the spherically symmetric case, axial symmetry
or in full three spatial dimensions, depending on computational resources.
Computations discussed here have been performed in spherical symmetry,
however preliminary results obtained for axially symmetric perturbations
lead to the same conclusions [8].

Fig. 2 shows snapshots of the temporal evolution of the density profile.
The outer boundary of the cloud was assumed to be located at R∞ = 2×106,
the central mass was set to mBH = 3 × 103 (gravitational units are used
here; in the Newtonian case this corresponds to setting G = 1). The ratio
mBH/mtot = 3%. The accretion mass rate is so small that the change
of the central mass could be neglected during the entire evolution. Other
parameters of the unperturbed flow was as follows: ̺∞ = 3 × 10−15, U∞ =
−4 × 10−5; the parameters of the polytropic equation of state are: K =
5 × 104, Γ = 1.4.

For the results illustrated in Fig. 2 the initial perturbation was chosen
to be a bell-shape profile of a sine function restricted to one half of its pe-
riod. Such perturbation, initially located outside the sonic radius, produces
two signals: one travelling outwards and one towards the centre. If the
initial amplitude of the perturbation is very small, the signal propagating
inwards passes through the sonic point and eventually disappears in the in-
ner boundary (it falls into the central body). For large initial perturbations
the situation is different. A shocked, discontinuous solution can develop due
to the perturbation and we can observe some reflection of the signal that was
initially propagating inwards. In both cases the behaviour is stable. The
amplitudes of the perturbations decrease and after sufficient time we are
left with the initial solution. This can be demonstrated for both accretion
regimes: solutions with a heavy point mass in the centre and relatively small
amount of accreting fluid and solutions with relatively small central mass as
compared to the mass of the fluid.
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Fig. 2. Evolution of the perturbed density. The snapshots are placed in chronolog-
ical order. The profile corresponding to the unperturbed flow is depicted with a
dotted line.
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