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This paper briefly discusses the nature of curvature singularities in
asymptotically flat van Stockum spacetimes.
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1. Introduction

In this paper we address the issue of the nature of curvature singular-
ities in asymptotically flat van Stockum spacetimes. The spacetimes were
first considered by van Stockum [1]. These are stationary and cylindrically
symmetric spacetimes of dust moving along orbits of the time translation
Killing vector field. Such flow is rigid and its angular velocity of rotation
with respect to distant stationary observers (“fixed stars”) is identically zero
as if elements of the fluid were “frozen into” background. Despite the fact,
vorticity scalar of the flow which measures local rotation of the fluid is a non-
vanishing function on spacetime. It is proportional to proper energy density
of dust. One may view the motion of the fluid as resulting from differential
dragging of locally non-rotating observers who provide local standards of
rest. In other words, space warps about symmetry axis of the system due
to presence of angular momentum, thus effective motion of the fluid relative
to space on circular orbits is still possible. The only Newtonian limit of the
flow is empty flat spacetime.

Without a careful analysis a class of asymptotically flat solutions of van
Stockum flow may be wrongly interpreted as globally regular. Bonnor’s
solution found in [2] is an example of such a solution. Bonnor pointed out
that the spacetimes should have zero total mass. It was shown later in [3]
that all asymptotically flat van Stockum spacetimes contain singularities
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of curvature of which support has measure zero. Active masses of these
singularities are negative and balance positive masses distributed smoothly
in other regions so as total mass of these spacetimes is zero.

What is the nature of these singularities? A curvature singularity is usu-
ally associated with diverging of some invariants built from the components
of the Riemann tensor. The Schwarzschild singularity has this property since
RµναβRµναβ = 48M2r−6 → ∞ as r → 0. But it is also possible that such
limits are everywhere bounded and spacetime may be still singular. For
illustration let us consider a cube all of whose side walls are flat. There ex-
ists a continuous deformation that transforms the cube onto the unit sphere
thereby the two figures become the same object, at least from the point of
view of topology. As so, they have the same Euler characteristic χ which
cannot be changed by continuous deformations. The invariant is defined by
4πχ =

∫

S
K dS, where K = R12

12 is the Gauss curvature of the deformed
closed surfaces S. In this way we come to the conclusion that K, which is
constant on the sphere, tends to a distribution (an element of a broader class
of functions containing Dirac δ function) in the limit as the sphere becomes
the cube, and that the cube is almost everywhere flat except for a measure
zero set were “infinite” curvature is localized.

Singularities of this kind may be easily overlooked while solving Ein-
stein’s equations. However, some integral characteristics may help us to
detect their presence. In the following section a pedagogical example of this
will be presented.

2. More about singularities in van Stockum spacetimes

The most general line element of van Stockum spacetime in “cylindrical”
coordinates (t, ρ, φ, z) reads

ds2 = −dt2 + 2Π (ρ, z)dtdφ + (ρ2 − Π2(ρ, z))dφ2 + e2Ψ(ρ,z)
(

dρ2 + dz2
)

.

Structure function Π has the interpretation of specific angular momentum,
and Ψ is related to the Gauss curvature K = −e−2Ψ (Ψ, ρρ + Ψ, zz) of two di-
mensional sections of constant t and φ with the line element e2Ψ

(

dρ2 + dz2
)

.
The interesting feature of asymptotically flat van Stockum spacetimes is

that their total mass is zero, however, the total angular momentum may be
still nonzero. This is seen directly from the form of the above line element as
asymptotical flatness implies that Π ∼ 2Jr−1 sin2 θ and Ψ ∼ O(r−4) where
r and θ are ordinary spherical coordinates. Another way of finding total
mass is to calculate Komar mass, which for the above line element reduces
to the form

M = lim
r→∞

1

8π

∫ ∫
(

Π ∂rΠ

r2 sin2 θ

)

r2 sin θdθdφ ,



Curious Spacetime Singularities 3959

hence M = 0 for Π ∼ O(r−1). On the other hand, Einstein’s equations
imply that, for sufficiently smooth solutions, energy density D is positive

D = e−2Ψ
Π2

, ρ + Π2
, z

8πρ2
> 0 ,

and that

Ψ, ρ =
Π2

, z − Π2
, ρ

4ρ
, Ψ, z = −Π, ρΠ, z

2ρ
.

For the equations to hold one needs also that the integrability condition

Π, ρρ −
Π, ρ

ρ
+ Π, zz = 0 (2.1)

is satisfied, since second partial derivatives of Ψ should commute. Then D
can be expressed also as

D = − 1

2π
e−2Ψ (Ψ, ρρ + Ψ, zz) =

K
2π

. (2.2)

This equation in conjunction with the previous expression for D says that
Gauss curvature of surface (ρ, z) should be nonnegative.

The integrability condition is quite simple to solve exactly, and the corre-
sponding energy density can be easily found. Among other solutions, a vast
of asymptotically flat spacetimes can be constructed that may contain also
closed time-like curves (coordinate φ is timelike if |Π| > ρ).

But how can it be possible to have simultaneously zero total mass and
everywhere nonnegative proper energy density? To answer this question it
should be remarked that the above reduced set of Einstein’s equations was
derived with the assumption that second partial derivatives of metric func-
tions Π and Ψ were continuous. Apparently, global solutions of Einstein’s
equations of asymptotically flat van Stockum flow with the assumed differ-
entiability class do not exist at all. Thus asymptotically flat van Stockum
spacetimes provide a concrete example showing that sometimes formal cal-
culations in physics may concern mathematically nonexisting objects and
that sometimes mathematical pedantry in physics is indispensable.

Bellow we show that asymptotical flatness excludes the existence of star-
like van Stockum spacetimes, that is, with asymptotically flat and simply
connected spaces and with everywhere positive and integrable proper energy
density. By integrating both sides of equation (2.2) over a hypersurface H

of constant time t we get

0 <

∫

H

√−gDdρ dφ dz =

∫

R2

d

(

ρ2

[

∂z

(

Ψ

ρ

)

dρ − ∂ρ

(

Ψ

ρ

)

dz

])

,
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where integration over azimuthal angle was carried out. By assumption Ψ

has continuous second derivatives on R
2. Then, by virtue of Stokes theorem,

the surface integral on the right hand side can be transformed to a curvilinear
integral over a boundary of R

2. By asymptotic flatness Π ∼ O(r−1) ⇒ Ψ ∼
O(r−4), therefore the curvilinear integral vanishes. This in turn contradicts
positivity of total mass defined by the volume integral on the left side. In
this way we arrive to the conclusion that the region where the reduced set
of equations is equivalent to Einstein’s equations is not simply connected.
Moreover, from the theory of elliptic equations on R

2 it follows that solutions
of (2.1) are twice differentiable everywhere except for a measure zero subset
of R

2 where solutions exist in generalized sense. Thus the reduced set of
equations is equivalent to Einstein’s equations not everywhere but almost
everywhere, that is, except for a measure zero set of R

2. Since total mass
of an asymptotically flat van Stockum spacetime is zero and active mass
M of its regularity regions is positive, active mass of the measure zero set
(being also the set of curvature singularity) is equal to minus M . For more
information concerning this issue, see [3].

There exists also another way of seeing that the negative mass singu-
larities are present by recalling the positive mass theorem. It implies that,
provided the dominant energy condition is satisfied, the only globally regular
and asymptotically flat spacetime with vanishing total mass is the Minkowski
spacetime. The spacetimes of concern here are not Minkowskian, therefore
they must contain regions where the assumptions of the theorem are not
satisfied. These are the singularities with measure zero support in asymp-
totically flat van Stockum spacetimes that violate the dominant energy con-
dition.

I would like to thank Professor Piotr Bizoń for his useful comments
concerning positivity of mass in General Relativity Theory.
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