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The relation between the Calogero model, namely, a system of N iden-
tical particles in one dimension with inverse-square interactions, and the
three classical types of quantum-mechanical matrix models is well-known.
In this talk I explore various generalized Calogero models and identify the
quantum mechanical matrix model they correspond to at special values
of their couplings. I also present and briefly discuss the collective field
formulation of these generalized Calogero models.
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1. Introduction

Consider the U(N)-invariant Hamiltonian

HMM = −tr
∂2

∂φ2
+ tr V (φ) (1.1)

governing the dynamics of an N×N complex hermitian matrix φ. Let us diag-
onalizeφby the unitary matrix U as φ=U †XU , with X =diag(x1, . . . , xN ),
and split (1.1) into its U(N)-singlet and U(N)-angular momentum pieces as

HMM = −Hsinglet + angular momentum piece . (1.2)

Here

Hsinglet = −
N

∑

i=1

1

∆(x)2
∂

∂xi
∆(x)2

∂

∂xi
+

N
∑

i=1

V (xi) , (1.3)

∗ Presented at the Conference on Random Matrix Theory, “From Fundamental Physics
to Applications”, Kraków, Poland, May 2–6, 2007.

(4041)



4042 J. Feinberg

where ∆(x) =
∏

i>j
(xi − xj) is the Vandermonde determinant. The

angular momentum piece = −
∑

i6=j

∂
∂Rij

∂
∂R∗

ij

(xi − xj)2
, (1.4)

where dR = UdU † is the right-invariant form.
These formulas may be readily generalized to include all three classical

types of matrix models, where, in particular,

Hsinglet = −
N

∑

i=1

1

|∆(x)|β
∂

∂xi
|∆(x)|β

∂

∂xi
+

N
∑

i=1

V (xi) , (1.5)

with β := 1, 2, 4 corresponding to real-symmetric, complex hermitian, and
quaternionic-self-dual matrices, respectively.

The relation between the matrix-model Hamiltonians (1.5) and the Calo-
gero model (CM) [1, 2]

Hc = −
N

∑

i=1

∂2

∂x2
i

+ λ(λ − 1)
∑

i6=j

1

(xi − xj)2
, (1.6)

describing N identical particles in one dimensions, subjected to inverse
square interactions with dimensionless coupling λ, is well-known. For λ=β/2
:= 1/2, 1, 2, Hc and Hsinglet are related by a similarity transformation

Hc = ∆(x)λ Hsinglet ∆(x)−λ . (1.7)

This similarity transformation can be established by using the identity

1

∆(x)λ





N
∑

i=1

∂2

∂x2
i

− λ(λ − 1)
∑

i6=j

1

(xi − xj)2



∆(x)λ

=

N
∑

i=1

1

∆(x)2λ

∂

∂xi
∆(x)2λ ∂

∂xi
. (1.8)

For recent reviews on the Calogero and Calogero–Sutherland models see
[3, 4]. It is appropriate to mention at this point the recent review on
the collective-field and other continuum approaches to the spin-Calogero–
Sutherland model [5].

In the next section I shall describe two possible generalizations of the re-
lation (1.7). The first one involves a two-dimensional version of the Calogero
model and its relation to normal matrices (or more generally, a d-dimensional
version of the Calogero model and its relation to d-commuting hermitian ma-
trices). The second generalization extends (1.6) into two-species of identical
particles, and it is related to dynamics over a certain symmetric super-space.
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2. Generalized Calogero models and their relation

to Matrix Models

2.1. Generalization into d-dimensions

The Calogero–Marchioro model [6] is a d-dimensional generalization of
the Calogero model (1.6). Consider N identical particles in d-dimensions
with coordinates ri ∈ IRd i = 1, . . . , N . The Calogero–Marchioro Hamilto-
nian is given by

−
1

2

N
∑

i=1

∇2
i + g

∑

i<j

1

r2
ij

+ G
∑

i

∑

j<k

′ rij · rik

r2
ijr

2
ik

, (2.1)

to which we may add a confining term m2

2

∑

i r
2
i . Here rij = ri − rj . An

important feature of (2.1) is the three-body interaction term. (This term
vanishes identically at d = 1.) This model was discussed during the past
few years in [7, 8], and more recently in [9, 10].

At g = G = 1, (2.1) is related to the singlet sector of a quantum-
mechanical Hamiltonian describing d-commuting N ×N hermitian matrices

φ = (φ1, . . . , φd), [φa , φb] = 0 , φ†
a = φa in a way similar to (1.7).

Let us collect these d commuting matrices into a d-dimensional vector
of matrices φφ. These commuting matrices are diagonalizable by a common
unitary matrix U ∈ U(N) as φφ = U † diag (r1 , . . . , rN )U , ri ∈ IRd i =
1, . . . , N . The corresponding Hamiltonian of this matrix model is [10]1

HMM = −
1

2

N
∑

i=1

1

∆(r)2
∇i · ∆(r)2 ∇i +

∑

i

V (r2
i ) −

∑

i6=j

∂
∂Rij

∂
∂R∗

ij

r2
ij

, (2.2)

where ∆(r)2 =
∏

i>j
r2

ij . The case d = 2 corresponds to normal matrices,

namely, complex matrices φ such that [φ, φ†] = 0, since a normal matrix can
always be written as φ = φ1 + iφ2, with φ1 , φ2 being commuting hermitian
matrices. The quantum mechanical model of normal matrices was recently
analyzed in detail in [10].

As was mentioned above, The Calogero–Marchioro Hamiltonian (2.1), at
g = G = 1, can be mapped, by a similarity transformation, into the singlet
sector of (2.2) (with V (r2) ∝ r2).

1 The discussion in [10] is for d = 2. The generalization to arbitrary d is immediate.
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2.2. The multi-species Calogero model in one-dimension

Calogero’s original model describes N indistinguishable particles on the
line which interact through an inverse-square two-body interaction. It is
well-known, however, that the CM may alternatively be interpreted in terms
of N free particles obeying generalized exclusion statistics [3, 4, 12–15].

Haldane’s formulation of statistics [12] may be extended to systems made
of different species of particles, in which the interspecies statistical coupling
depends on the species being coupled. This may be implemented in a multi-
species generalization of the CM in which particles have different masses and
different couplings to each other [16, 18–20].

Quite a few such generalized multi-sepcies Calogero models exist, but
contrary to the original CM, knowledge about their exact solvability was
rather tenuous. The recent breakthrough in this front derives from the
papers [21–24]. The authors of [21] introduced deformed Calogero models,
related to root systems of super-algebras, and gave effectively a proof of
their integrability. In [22] they presented a more conceptual proof by using
shifted super-Jack polynomials. In related developments, the authors of
[23, 24] introduced a supersymmetric generalizations of the CM which was
based on Jacobians for the radial coordinates on certain super-spaces. Both
aforementioned models are closely related to the multi-family generalization
of the CM introduced in [25, 26].

Motivated by these developments, the latter model was investigated
in [11] in the limit in which each family contains a large number of parti-
cles. In this limit, the high-density limit, the system is amenable to large-N
collective-field formulation which will be discussed in Sections 3 and 4.

The two-species Calogero model is defined by the Hamiltonian [26]

H = −
1

2m1

N1
∑

i=1

∂2

∂x2
i

+
λ1(λ1 − 1)

2m1

N1
∑

i6=j

1

(xi − xj)2

−
1

2m2

N2
∑

i=1

∂2

∂x2
α

+
λ2(λ2 − 1)

2m2

N2
∑

α6=β

1

(xα − xβ)2

+
1

2

(

1

m1

+
1

m2

)

λ12(λ12 − 1)

N1
∑

i=1

N2
∑

α=1

1

(xi − xβ)2
. (2.3)

Here, the first family contains N1 particles of mass m1 at positions xi, i = 1, 2,
. . . , N1, and the second one contains N2 particles of mass m2 at positions
xα, α = 1, 2, . . . , N2. All particles interact via two-body inverse-square po-
tentials. The interaction strengths within each family are parametrized by
the coupling constants λ1 and λ2, respectively. The interaction strength
between particles of the first and the second family is parametrized by λ12.
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In (2.3) we imposed the restriction that there be no three-body interac-
tions, which requires [11, 25–29]

λ1

m1
2

=
λ2

m2
2

=
λ12

m1m2

. (2.4)

It follows from (2.4) that
λ2

12 = λ1λ2 . (2.5)

Finally, let me briefly mention that the F -species generalization of (2.3)
was also discussed in [11]. In this generic model, the a-th family consists of
Na particles of mass ma, which interact among themselves with couplings
parametrized by λaa , and with the particles of the b-th family with couplings
parametrized by λab . The absence of 3-body interactions is guaranteed by
λab/(mamb) = const. for all a, b. Thus λaaλbb = λ2

ab.

3. Collective field formulation

In this section I shall present a brief and non-technical summary of the
collective field formalism [30,31] in the context of a concrete example — the
d-matrix model (2.2). The case d = 2 (i.e., the normal matrix model) was
discussed in great detail in [10], which contains a pedagogical review of the
collective field formalism, in a way which is somewhat complimentary to the
presentation in the textbook [30].

Thus, consider the d-dimensional N -body system of (2.2), with particles’
coordinates r1 , . . . , rN and their conjugate momenta. We shall further as-
sume that N is large, such that the large-density limit may be assumed.
Our objective then is to transform these canonical variables into (an over-
complete) continuous set of commuting density operators

ρ(r) =

N
∑

i=1

δ(r − ri) (3.1)

and their conjugate momenta operators Π(r). The ensuing formalism is
a certain avatar of the old Bohm–Pines theory of plasma oscillations [32] .

Evidently, the transformation of d ·N d.o.f. to a continuum is ill-defined
and needs to be regulated. One possible regularization is to work in Fourier
space, where the system is restricted to its lowest dN modes. In the reg-
ulated theory, the transformation to density variables is canonical. Col-
lective field theory is a high density, continuum formalism. It probes the
many-body system at length scales much larger than the mean interparticle
spacing 1/(ρ̄)1/d (where ρ̄ is the mean bulk density). In this way we obtain
a continuous hydrodynamic description of the many-body system.
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The collective Hamiltonian is obtained as a functional of ρ(r) and its
conjugate momentum Π(r). It acts on wave functionals of ρ(r) which can
be traced back only to purely symmetric factors of the original many-body
wave functions Ψ(r1 , . . . , rN ) . These symmetric factors may be obtained
by stripping off of Ψ any permutation non-invariant factors (e.g. — Jastrow
factors) by means of similarity transformations.

The collective Hamiltonian governing the dynamics of ρ(r) is

Hcoll = 1
2

∫

dr∇Π(r) · ρ(r)∇Π(r) +
1

2

∫

dr ρ(r)E2(r)

+

∫

dr ρ(r)V (r)−µ

(∫

dr ρ(r)−N

)

+a singular term . (3.2)

The singular piece in (3.2) need not concern us here. A particularly impor-
tant piece of (3.2) is the so-called collective potential

Vcoll = 1
2

∫

dr ρ(r)E2(r) , (3.3)

where

E(r) =
∑

i

r − ri

(r − ri)2 + s2
, s → 0 , (3.4)

(note that it is an “electric field” in d = 2). The quantity

Vext(r) =

∫

dr ρ(r)V (r) (3.5)

is the external potential, originated in the interaction of the particles with
the external field V (r) . Finally, µ is a Lagrange multiplier (the chemical
potential) enforcing the constraint

∫

dr ρ(r) = N .
By construction Hcoll is symmetric with respect to the flat integration

measure dµ ({ρ(r)}) =
∏

r
dρ(r) (restricet to (ρ(r) ≥ 0)).

The density field ρ(r, t) and its momentum Π(r, t) obey the canonical
commutation relations

[

ρ(r, t) ,Π(r′, t)
]

= iδ(r − r′) . (3.6)

(Here we ignored the fact that the Fourier zero-mode of ρ is not dynami-
cal. This distinction is irrelevant in the large volume limit.) Therefore, the
Heisenberg equations of motion of these fields are
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∂tρ(r, t) = −∇ · (ρ(r, t)∇Π(r, t)) (3.7)

∂tΠ(r, t) = −1
2
(∇Π(r, t))2 −

δ

δρ(r, t)

×

∫

dr′
[

1
2

ρ(r′, t)E2(r′, t) + ρ(r′, t)
(

V (r′)− µ
)]

.

By construction of the collective field formalism, the Heisenberg equations
(3.7) lend themselves to hydrodynamical interpretation. To make this ex-
plicit we define the velocity field

v(r, t) = ∇Π(r, t) (3.8)

in terms of which (3.7) and may be written (after taking the gradient of the
second equation in (3.7)) as

∂ρ + ∇ · (ρv) = 0 ,

∂tv + (v · ∇)v = −∇W . (3.9)

Here

W (r) =
δ

δρ(r, t)

∫

dr′
[

1
2
ρ(r′, t)E2(r′, t) + ρ(r′, t)

(

V (r′) − µ
)]

(3.10)

is the enthalpy density of the fluid, and the equations (3.9) really describe
the isentropic flow of an Eulerian fluid.

As was mentioned above, the case d = 2, corresponding to the large-
N limit of quantized normal matrices, was studied in detail in [10] for an
arbitrary confining potential V (r) . There, the problem was reduced to 2d
nonlinear electrostatics, and the ground state energy and eigenvalue density
were obtained explicitly in terms of the couplings in the confining potential.
Furthermore, certain quantum phase transitions (disk-annulus transitions in
the shape of the ground state’s ρ(r)) were studied in [10] explicitly.

Collective field theory of the 2d Calogero–Marchioro model (2.1) (with
emphasis on the special point g = G = 1) was studied recently in [33],
including analysis of quadratic fluctuations (i.e., leading 1/N corrections)
around the uniform density ground state.
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4. Collective field formulation of the two-family Calogero model

Collective field formulation of the conventional one-family Calogero model
appeared originally in [34], as a generalization of the collective field formula-
tion of quantized quaternionic self-dual matrices. Fluctuations (leading 1/N
corrections) around the infinite-N ground state were later studied in [35].
For a recent review, see [36].

In what follows I shall concentrate on the collective field formulation of
the two-family model, following [11]. Recall the Hamiltonian (2.3) (sub-
jected to the constraints (2.4) and (2.5)). Due to the singular interactions
at coincidence points, we expect wave functions to vanish at these points.
Thus, these many-body wave functions should contain Jastrow factors

Π1 =

N1
∏

i>j

(xi−xj)
λ1 , Π2 =

N2
∏

α>β

(xα−xβ)λ2 , Π12 =

N1,N2
∏

i,α

(xi−xα)λ12 , (4.1)

and, therefore, have the general form

Ψ({xi}, {xα}) = Π1Π2Π12χs({xi}, {xα}) , (4.2)

where χs({xi}, {xα}) is completely symmetric. As was explained in the
previous section, the collective field Hamiltonian, being a functional of the
totally symmetric density fields, acts only on the continuum limit of the
symmetric factor χs({xi}, {xα}). Thus, we have to strip away the Jastrow
factors in (4.2), which induces the similarity transformation [37]

H̃ = Π−1
12 Π−1

2 Π−1
1 H Π1Π2Π12 (4.3)

on the Hamiltonian. H̃ acts on totally symmetric functions χs and thus
lends itself to collective field formulation. The relevant collective fields are

ρ1(x) =

N1
∑

i=1

δ(x − xi) , π1(x) = −i
δ

δρ1(x)
,

ρ2(x) =

N2
∑

α=1

δ(x − xα) , π2(x) = −i
δ

δρ2(x)
, (4.4)

and they are subjected to the normalization conditions

∫

dx ρ1(x) = N1 ,

∫

dx ρ2(x) = N2 . (4.5)
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The collective Hamiltonian thus obtained from H̃ is

Hcoll =
1

2m1

∫

dxΠ ′
1(x)ρ1(x)Π ′

1(x) +
1

2m1

∫

dx ρ1(x)

×

(

λ1 − 1

2

∂xρ1

ρ1

+ λ1

∫

−
dyρ1(y)

x − y
+ λ12

∫

−
dyρ2(y)

x − y

)2

+
1

2m2

∫

dxΠ ′
2(x)ρ2(x)Π ′

2(x) +
1

2m2

∫

dx ρ2(x)

×

(

λ2 − 1

2

∂xρ2

ρ2

+ λ2

∫

−
dyρ2(y)

x − y
+ λ12

∫

−
dyρ1(y)

x − y

)2

+ µ1

(∫

dx ρ1(x) − N1

)

+ µ2

(∫

dx ρ2(x) − N2

)

+ a singular term . (4.6)

4.1. Exact duality symmetries of Hcoll in (4.6)

The collective-field theory provides a natural framework for analyzing
symmetries of the system which cannot be seen directly in the original
(finite) N -particle quantum system. An important example in this respect
is the strong-weak coupling duality symmetry of the one-family Calogero
model discussed in [38]. In [11] this approach was generalized to the multi-
family Calogero model. As we shall see momentarily, the collective-field
Hamiltonian (4.6) is invariant under certain duality transformations, which
interchange, among other things, particles and antiparticles, and thus gen-
eralize the duality symmetry [38] of the ordinary Calogero model. These
dualities, which form an Abelian group, were all identified and studied
in [11]. In particular, the results of [11] enable us to find the conditions
under which collective quasi-particles describing density fluctuations in the
F -family Calogero model can be identified with those of an effective one-
family Calogero model. (In what follows I shall only discuss the two-family
case explicitly.) As a by-product, this may help to better understand the
exact solvability of some of the recently proposed two-family Calogero mod-
els [21–24]. It should be stressed that the duality relations derived and
discussed in [11] are exact symmetries of the collective-field Hamiltonian, as
opposed to the approximate duality symmetries discussed in [39, 40] .
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Let us now introduce these duality transformations and the correspond-
ing symmetries of the collective-field Hamiltonian (4.6). It is straightforward
to check that (4.6) is invariant under the following set of transformations2,3

of the parameters:

λ̃1 =
1

λ1

, λ̃2 =
1

λ2

, m̃1 = −
m1

λ1

, m̃2 = −
m2

λ2

, λ̃12 =
1

λ12

, (4.7)

and of the operators:

ρ̃1 = −λ1ρ1 , ρ̃2 = −λ2ρ2 , π̃1 = −
π1

λ1

, π̃2 = −
π2

λ2

. (4.8)

Let us denote the set of transformations (4.7) and (4.8) by T12. These
transformations are canonical, as they preserve the commutation relations
(3.6). For obvious reasons, we refer to the transformations T12 as the strong-
weak coupling duality transformation. Thus, we see that our Hamiltonian,
expressed in terms of the new tilded parameters and operators, is identical
in form to the original one, but with λ1 and λ2 and the inter-family coupling
λ12 turned into their reciprocal values; with N1 and N2 turned, respectively,
into Ñ1 = −λ1N1 and Ñ2 = −λ2N2 and, finally, with masses m1 and m2

turned into −m1/λ1 and −m2/λ2. The minus signs which occur in these
identifications are all important: By drawing analogy to a similar situation in
the one-family case [38,41], we interpret all negative values of the parameters
and densities as those pertaining to holes, or anti-particles. Now, strictly
speaking, since Ni and Ñi are integers, this interpretation is consistent only
for rational couplings, as was discussed in [38, 41].

We further note that (4.6) is invariant also under two more sets of canon-
ical duality transformations. The first one, which we denote by T1, is com-
prised of the set of transformations of parameters

λ̃1 = λ1 , λ̃2 =
1

λ2

, m̃1 = m1 , m̃2 = −
m2

λ2

, λ̃12 = −
λ12

λ2

, (4.9)

and of the operators

ρ̃1 = ρ1 , ρ̃2 = −λ2ρ2 , π̃1 = π1 , π̃2 = −
π2

λ2

. (4.10)

Negative values of masses, densities and momenta, as in the previous case,
refer to holes. These transformations map the two-family Calogero model of

2 Note that (4.7) and (4.8) do not constitute a symmetry of the original Hamiltonian
(2.3).

3 It should be mentioned that the (λi−1)∂xρi/ρi terms in (4.6) are crucial in obtaining
these transformations uniquely.
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particles (positive m1,m2, ρ1 and ρ2) with inter-family interaction strength
λ12 into the dual two-family Calogero model of particles (m1, ρ1) and holes
(m̃2, ρ̃2) with the inter-family interaction strength −λ12/λ2. The second
(and last) set of duality symmetries of (4.6), which we denote by T2, is
obtained from (4.9) and (4.10) simply by permuting the family indices
1 ↔ 2 .

It is easy to check that the duality transformations T1, T2, T12, together
with the identity transformation I, form an Abelian group under composi-
tion, in which each element squares to I, and where T1T2 = T12, T1T12 = T2

and T2T12 = T1. This is readily identified as Klein’s four-group. The latter
is isomorphic to ZZ2⊗ZZ2 , where the two ZZ2 factors are {I, T1} and {I, T2} .

4.1.1. Resemblance of special two-family Calogero models to single-family

Calogero models

As an interesting application of the duality symmetry group, consider
the special case of the two-family Calogero model (2.3) in which4 λ2 = 1/λ1

and m2 = −m1/λ1. From (2.4) we then find that λ12 = (m2/m1)λ1 = −1.
Note that the two particle families in this system are generically manifestly
distinct. Nevertheless, this distinction is, in some sense, an illusion. To
see this, note that by the duality transformations (4.9) and (4.10), namely,
the element T1 of the duality group, this system is equivalent to a two-
family system with parameters λ̃1 = λ̃2 = λ̃12 = λ1 , m̃1 = m̃2 = m1 and
densities ρ̃1 = ρ1 , ρ̃2 = −ρ2/λ1 . In the latter dual system, the two families
are identical! For this reason, we may refer to the two dimensional locus

λ2 =
1

λ1

, m2 = −
m1

λ1

, λ12 = −1 , (4.11)

in parameter space as the “surface of hidden identity”, or SOHI. Thus, the
special two-family Calogero model we started with resembles the single-
family Calogero model specified by

λ = λ1 , m = m1 , ρ = ρ̃1 + ρ̃2 = ρ1 −
1

λ1

ρ2 . (4.12)

Similarly, by inverting the roles of family indices 1 ↔ 2 in the previous
discussion, which leaves us on the SOHI (4.11), and then applying the duality
transformation T2, we shall conclude that the special two-family Calogero
model we started with resembles the single-family Calogero model specified
by

λ = λ2 , m = m2 , ρ = ρ2 −
1

λ2

ρ1 . (4.13)

4 If we ignore inter-family coupling, we can think of this system as made of two single-
family models, related by the one-family version of the strong-weak coupling duality,
save for the relation between densities.
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In both cases, the effective single-species collective field ρ actually shares
the statistics λ and the mass m with the first or the second family, re-
spectively. Note that these two cases can be mapped one each other by the
duality transformation T12. Thus, the SOHI (4.11) is left invariant under
T12. However, the latter does not act on it freely, as λ1 = λ2 = −λ12 = 1
and m1 = −m2 is a fixed line. Models lying on this line are comprised of
particles and their antiparticles, and only particles and antiparticles interact
(repulsively).

Note that we described the relation between the original special two-
family models and the corresponding single-family models merely as “resem-
blance”. They are certainly not identical! The density operator ρ appearing
on the LHS of (4.12) and (4.13), which corresponds to the single-family
Calogero model, is defined in a Hilbert space made of many-body wave
functions which are completely symmetric in the coordinates of all parti-
cles. ρ1 and ρ2, on the other hand, are symmetric only in the coordinates
of particles of each family separately. The best one could do is perhaps to
consider the two-family system with identical families (the one dual to the
special two-family systems we started with) as a one-family system divided
into two parts, differing by some internal quantum number, in which one
symmetrizes in each sector separately. However, this means one should also
contrapt an actual physical context to justify such separate symmetrization.

Sergeev and Veselov [21] constructed supersymmetric extensions of the
Calogero–Sutherland model which actually correspond to the two-family
Calogero model (2.3) with λ1λ2 = 1, λ12 = −1 and m1m2 < 0! They gave
solutions in terms of deformed Jack polynomials. In a recent paper, Kohler
and Guhr [23] introduced a supersymmetric generalization of the Calogero–
Sutherland model. Their construction is based on Jacobians for the radial
coordinates on certain superspaces. This approach allowed them to explic-
itly construct the solutions in terms of recursion formulae for a non-trivial
(λ1λ2 = 1) one-parameter subspace in the (λ1, λ2) plane. The underlying
model involves two kinds of interacting particles, one with the positive and
the other one with the negative mass. Needless to say, this again corre-
sponds to our two-family Calogero model with λ12 = −1. It is interesting to
observe that the authors of Refs. [21–24] were probably unaware of the con-
straints (2.4). Namely, in their approaches, these constraints remain hidden,
but still present, as can be easily checked by direct substitutions. Conse-
quently, the two types of models discussed in [21–24], share the very same
parametric structure, which enables one to transform them to the one-family
Calogero model [11]. (This transformation will be discussed in the last sec-
tion.) This connection then guarantees their exact integrability. Although
the collective-field approach of [11], is applicable only to the multi-species
Calogero system with an infinitely large number of particles within each fam-
ily, it is most likely that the findings of [11] shed some light on the problem
of their exact integrability in general.
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Sections 2.2 and 4 are based on [11]. I thank V. Bardek and S. Meljanac
for introducing me to the multi-species Calogero models and for fruitful
collaboration on the subject.
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