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We derive the exact form of the eigenvalue spectrum of correlation
matrices obtained from a set of N time-shifted, iid Gaussian time-series of
length T . These matrices are random, real and asymmetric matrices with
a superimposed structure due to the time-lag. We demonstrate that the
associated (complex) eigenvalue spectrum is circular symmetric for large
matrices (lim N → ∞). This fact allows to exactly compute the eigenvalue
density via the inverse Abel-transform of the density of the symmetrized
problem. The validity of the approach is demonstrated by comparison to
numerical realizations of random time-series. As an example, spectra of
correlation matrices from time-lagged financial data are presented.

PACS numbers: 02.50.–r, 02.10.Yn, 05.40.–a, 87.10.+e

1. Introduction

In its simplest form, a random matrix ensemble is an ensemble of N ×N
matrices M whose entries Mij are uncorrelated iid random variables, and
whose distribution is given by

P (M ) ∼ exp

(

−βN

2
Tr MM

T

)

, (1)

where β takes specific values for different ensembles of matrices (e.g. depend-
ing on whether the random variables are complex- or real-valued). Eigen-
value spectra and correlations of eigenvalues in the limit N → ∞ have been
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worked out for symmetric N × N random matrices by Wigner [1]. For real
valued matrix entries, such symmetric random matrices are referred to as
the Gaussian orthogonal ensemble (GOE). The symmetry constraint has
later been relaxed by Ginibre and the probability distributions of different
ensembles (real, complex, quaternion) — known as Ginibre ensembles (Gi-
nOE, GinUE, GinSE) — have been derived [2] in the limit of infinite matrix
size. For ensembles of random, real asymmetric matrices (GinOE) — the
most difficult case — progress has been slow despite the great efforts under-
taken in the past decades. The eigenvalue density could finally be derived
via different methods [3,4], where — quite remarkably — the finite-size de-
pendence of the ensemble has also been understood [4]. For recent progress
in the field see [5].

However, these developments in random matrix theory (RMT) cannot be
used for (lagged) correlation matrices obtained from finite rectangular N×T
matrices X, which contain N time-series of length T . The matrix ensemble
corresponding to the N × N covariance matrix C ∼ XX

T is known as
the Wishart ensemble [6] and is a cornerstone of multivariate data analysis.
For the case of uncorrelated Gaussian distributed data, the exact solution
to the eigenvalue-spectrum of XX

T is known as the Marcenko–Pastur law
for N → ∞. The time-lagged analogon to the covariance matrix is defined
as Cij

τ ∼
∑T

t xi
tx

j
t−τ , where one time-series xi

t is shifted by τ timesteps
with respect to the other. In contrast to (real-valued) equal-time correlation
matrices of the Wishart ensemble, the spectrum of Cτ is in general complex.
While the complex spectrum of Cτ remains unknown so far, results for
symmetrized lagged correlation matrices have been reported recently [7, 8].
In [8], it was also shown that the methodology of free random variables can
be used to tackle a variety of correlated (symmetric) Wishart matrix models.
However, it is the analysis of the asymmetric time-lagged correlations which
would be highly desirable for many applications, which involve non-trivial
lead-lag relationships, ranging from finance and econometrics to biology and
physics. Here we review the methodology for the eigenvalue analysis of such
time-lagged correlations [9]. In Section 2 we discuss how solutions of RMT
problems pertaining to real, asymmetric matrices can be exactly obtained
from solutions to the symmetrized problem via the inverse Abel-transform.
This allows to derive the eigenvalue spectra. As an example we compare
the theoretical results with real financial data in Section 3, and conclude in
Section 4.

2. Spectra of time-lagged correlation matrices

The entries in the N × T data matrices X for N time-series of length T
are denoted by xi

t, which are Gaussian iid random variables. Time-lagged
correlations are defined as
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Cij
τ ≡

〈(

xi
t −
〈

xi
t

〉)(

xj
t−τ −

〈

xj
t−τ

〉)〉

σiσj
, (2)

where τ is the time-lag and σi is the standard deviation of time-series i. For
τ 6= 0, the lagged correlation matrix Cτ is generally not symmetric and can
be written as

Cτ =
1

T
XDτX

T , (3)

where Dτ ≡ δt,t+τ . Denoting the eigenvalues of Cij
τ by λi and their associ-

ated eigenvectors by ~ui, the eigenvalue problem is
∑

j

Cij
τ ~uj = λj~uj . (4)

Eigenvalues λi are either real or complex conjugate (for real Cij
τ the conju-

gate eigenvalue λ∗
i also solves Eq. (4)). Regarding the elements of Cij

τ as
random variables note that their specific construction, Eq. (3), results in a
departure from real, asymmetric N × N matrix with iid Gaussian entries.
Unfortunately, powerful addition formalisms developed for non-Hermitian
random matrices (see e.g. [10] and references therein) are not applicable in
the case of random real asymmetric matrices. However, it was shown that
the problem can be treated in a way formally equivalent to classical electro-
statics [3, 11] and a generalization of Girko’s semicircular law [12] could be
recovered with the replica technique.

2.1. The general argument

We start our argument from the electrostatic potential analogy intro-
duced by Wigner. The idea is to interpret the distribution of eigenvalues in
the complex plane as a distribution of electrical charges in two dimensions.
Following the same arguments as in [11], the corresponding potential is

φ(x, y) = − 1

N

〈

ln det
((

δijz
∗ − Cji

τ

) (

δijz − Cij
τ

))〉

c , (5)

where z = x + iy, and 〈...〉c denotes the average over the distribution,

P (X) ∼ exp

(

−N

2
Tr XX

T

)

. (6)

It can be shown [11] that Eq. (5) allows for the calculation of a density
ρ(z) = ρ(x, y) via the Poisson equation

ρ(x, y) = − 1

4π
△φ(x, y) . (7)
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Expanding the argument of the determinant in Eq. (5) we obtain the positive
definite matrix

Hij = δij|z| + Cij
τ Cji

τ − x
(

Cij
τ + Cji

τ

)

+ iy
(

Cij
τ − Cji

τ

)

. (8)

This form shows that any symmetric (anti-symmetric) contribution of Cij
τ

only influences the real (imaginary) part of z. If there is no structural
difference in randomness for the symmetric and the anti-symmetric part of
matrix Cτ , the expression of Eq. (8) is equivalent under exchange of x and
y (distribution sense), and Eq. (7) is symmetric in x and y. Since we do
not expect any direction in the complex plane being distinguished from any
other in the limit N → ∞, we conceive that the eigenvalue density resulting
from Eq. (5) is a radially symmetric function, i.e.,

ρ(x, y) = ρ(r) ≡ 1

2πr

∫

S

dzρ(z) δ(|z| − r) . (9)

A more formal argument can be given by expanding Hij entering the poten-
tial φ [13]. Since typically Cij < 1, one can write Hij ≈ |z|(A + εB), where
ε is a small perturbation, A = δij and B = CijCji/|z| − x̄

(

Cij − Cji
)

+

iȳ
(

Cij + Cji
)

with x̄ = x/|z| and ȳ = y/|z|. Without loss of generality we
can fix |z| = 1 and expand the determinant,

φ(x, y) = − 1

N
〈 ln det(Hij)〉c = − 1

N
〈Tr ln(Hij)〉c

≈ − 1

N

〈

Tr(B) − Tr

(

B2

2

)

+ Tr

(

B3

3

)

− · · ·
〉

c

. (10)

We checked to fourth order that this expansion indeed only leads to terms
in r for N → ∞, [9]. A more direct way of proving the conjecture would
be to replace the determinant in Eq. (5) by Gaussian integrals and use the
replica method to average over the distribution of the Cij .

If ρ(r) is circular symmetric, the support S of the eigenvalue-spectrum
will be bounded by a circle with radius rmax. Since rmax is governed by
the standard deviation of the underlying random matrix elements, one can
compute the extent of the support of Cτ by considering the support of
the symmetric (rS

max) and the anti-symmetric matrices (rA
max), defined by

C
S
τ ≡ 1

2
(Cτ + Cτ

T ) and C
A
τ ≡ 1

2
(Cτ − Cτ

T ). Assuming equal standard
deviations of the symmetric and anti-symmetric matrices, σS = σA, implies
that the standard deviation σ of matrix Cij

τ , is σ =
√

2σS/2. Thus, the
support of Cτ is naturally defined by the disc of radius

rSmax =
1√
2
rS
max =

1√
2
rA
max . (11)
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The argument here is that the eigenvalue-density can be regarded as a ‘log-
gas’ [14] which has only one degree of freedom for C

S
τ and C

A
τ , but two

degrees of freedom for Cτ , hence leading to σ =
√

2σS/2 instead of
√

2σS.
Based on these relations and the discussion of Eq. (8), it is sensible to

conjecture that the projections of ρ(r) onto the x-axis, denoted by ρx(λ), and
the projection onto the y-axis, ρy(λ), are nothing but the rescaled spectra
of the solution to the symmetric, ρS(λ), and to the anti-symmetric problem,
ρA(y). To be more explicit,

ρx(λ) ≡ ρ(Re(λ)) =

∫

S

dy ρ(r) = ρS
(√

2x
)

,

ρy(λ) ≡ ρ(Im(λ)) =

∫

S

dx ρ(r) = ρA
(√

2y
)

, (12)

where integration extends over the support S in the complex plane. Al-
though this conjecture might seem quite natural we shall provide numerical
evidence for its correctness below.

The eigenvalue density of the symmetric problem can be obtained from
the well-known relation

ρS(x) =
∑

n

δ(x − xn) =
1

π
lim
ε→0

[

Im
(

GS (x − iε)
)]

. (13)

For radial symmetry of course, ρS ∼ ρA. The main idea is to use the following
method to determine the radially symmetric density ρ(r): Since the rescaled
eigenvalue density of the symmetrized problem ρS

(√
2x
)

is nothing but the
projection of ρ(r) onto the real axis, Eq. (12), it can be written as the
Abel-transform [15] of the radial density ρ(r),

ρS
(√

2x
)

= 2

∞
∫

x

dr
ρ(r)r√
r2 − x2

. (14)

One can then reconstruct the eigenvalue spectrum exactly (in the limit N→∞)
via the inverse Abel-transform, and thus via the cuts of the Greens function
of the symmetric problem,

ρ(r) = − 1

π2

∞
∫

r

d
dx limε→0

[

Im
(

GS
τ

(√
2x − iε

))]

√
x2 − r2

dx , (15)

where we have made use of Eq. (13). Typically, the solution of the symmetric
problem is valid in the N → ∞ limit; finite-size effects in real data might
cause deviations from the exact result.
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As an example the uniform eigenvalue distribution of real asymmetric
matrices in the complex plane C, found in [11], can be almost trivially recov-
ered from Wigner’s semicircle law of real symmetric matrices by applying the

inverse Abel-transform. Starting from the semicircle law ρ
(

λ̄
)

= 1
2π

√

4 − λ̄2

and after proper rescaling and normalization we insert ρS
(√

2x
)

= 1
π

√
2 − x2

into Eq. (15) to arrive at

ρ(r)=
1

π2

√
2

∫

r

x√
2 − x2

√
x2 − r2

dx=− 1

π2
arctan

( √
2 − x2

√
x2 − r2

)
∣

∣

∣

∣

∣

√
2

r

=
1

2π
(16)

i.e., ρ(r) = 1
2π for 0 < r <

√
2 and ρ(r) = 0 elsewhere.

2.2. Application to lagged correlation matrices

We now turn to the more specific problem of determining the eigenvalue
density of Cτ . What is left is to confirm the validity of the conjecture,
Eq. (12) and to show that — as a consequence — Eq. (15) gives the radial
eigenvalue distribution, ρ(r). We can refer to existing literature on the
symmetric problem: It has been shown [7,8], that the Greens function, G(z)
of the symmetric problem, Cτ

S = 1
2T X(Dτ + D−τ )X

T , is given by

1

Q3
z2G4(z) − 2

1

Q2

(

1

Q
− 1

)

zG3(z) − 1

Q

(

z2 −
(

1

Q
− 1

)2
)

G2(z)

+2

(

1

Q
− 1

)

zG(z) + 2 − 1

Q
= 0 , (17)

with Q ≡ T/N playing the role of a information-to-noise ratio. Note, that
this equation is independent of a specific value for τ [8]. It is trivial to show
that the Greens function pertaining to the anti-symmetric problem follows
the same equation, which reaffirms circular symmetry. Based on Eq. (17)
one can compute ρx(λ) by using Eqs. (13) and (12).

Fig. 1 shows numerical realizations of spectra of Cτ=1 as defined in
Eq. (3) with Gaussian iid entries in the columns of X, for various values of
Q. Note, that for Q < 1 the shape of the boundary of eigenvalues in the
complex plane changes from a disk to an annulus (see e.g. [16] for a discussion
of disc-annulus transition in non-hermitian matrix models). It is seen that
eigenvalues are enhanced along the real axis which can be attributed to a
well-known finite-size effect [3,11]. The prediction for the projections ρx and
ρy (lines, obtained from Eq. (13) and Eq. (17) in Fig. 1) is in good agreement
with the numerical data for the real parts of the eigenvalues (ρx). For the
complex parts (ρy) we recognize that there is a slight deviation from the
prediction due to the enhanced density along the real axis.
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Fig. 1. Complex eigenvalue spectra of time-lagged correlation matrices, obtained

from random matrices X. The entries of X are iid and Gaussian with unit variance.

In (a), (c), (e) and (g) the position of the eigenvalues is shown in the complex plane

for values of Q ≡ T

N
= 100, 10, 1 and 0.5, respectively. The visibly enhanced density

along the real axis is the finite-size effect mentioned in the text. The right column

shows the projections of the EVs onto the real and imaginary axis. Solid lines

are the theoretical predictions (numerical solutions to Eq. (17)). Note in (h) that

for this projection, the eigenvalue spectra is composed of different solutions to

Eq. (17) as G(z) itself has a discontinuity. The divergence at z = 0 is not shown

for analytical curves associated with Q = 100, 10 and 0.5.
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Finally, turning towards the point of reconstructing the radial eigenvalue
density, the function to be transformed (ρS(

√
2x) or ρA(

√
2y)) may be eval-

uated exactly (with some effort) for the symmetric case from Eq. (13) and
Eq. (17). The remaining integral of Eq. (15) will, in general, be hard to
solve. Nonetheless, we are able to solve it analytically for Q = 1 [9] and
obtain the exact formula for the eigenvalue density,

ρQ=1(r) =
1

K

[

23/43rΓ

(

5

4

)

Γ

(

5

4

)

Φ1
2

(

1

4
,
5

4
,
3

2
,
λ2

2

)

−21/4Γ

(

−1

4

)

Γ

(

7

4

)

Φ1
2

(

−1

4
,
3

4
,
1

2
,
λ2

2

)]

, (18)

with K ≡ 6
√

π5r3. Here Γ (x) is the Gamma- and Φ1
2(a, b, c, z) the hy-

pergeometric function. Note further that limQ→0 GS
Q(z) = 1

z , whereas for
Q → ∞ the Greens function and the eigenvalue density converge to those
of a random real, asymmetric matrix without specific structure, i.e. the flat
eigenvalue density [11].

We were not able to derive closed expressions for other values of Q. In
these cases the integral Eq. (15) has to be computed numerically. Results
are shown in Fig. 2 for Q = 100, 10 and 1. The theoretical predictions are

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

r

ρ(
r)

 

 

Im(λ)≈0

Re(λ)≈0

Im(λ)≈Re(λ)

(b)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

r

ρ(
r)

 

 

Im(λ)≈0

Re(λ)≈0

Im(λ)≈Re(λ)

0.5 1 1.5

0

0.02

0.04

0.06

r

(c)

Fig. 2. Radial eigenvalue densities along different directions (real axis, imaginary

axis and the diagonal in the complex plane. The solution of the inverse Abel-

transform (lines) is compared with (finite) numerical data (symbols). (a) Q=100

(b) Q=10 (c) Q=1; the inset shows a detail of the curve.
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compared to numerical data obtained from performing cuts along various
directions of the spectra ρ(x, y) from Fig. 1; along the x-axis, the y-axis
and along the diagonal direction, i.e. Re(λ) = Im(λ). These cuts were per-
formed numerically by calculating the density within narrow ε-strips along
the chosen directions. Again theoretical prediction and experimental densi-
ties coincide.

3. Empirical example of lagged financial data

RMT for equal-time covariance matrices has been extensively applied to
financial data in the past years, see among many others e.g. [17–19]. Here
we show results for the time-lagged case which could — so far — not be
compared to theoretical results. In particular we analyze 5 min data of the
S&P500 within the period of Jan. 2, 2002–Apr. 20, 2004. Time-series were
cleaned, corrected for splits and synchronized. After cleaning, the data set
X consisted of N = 400 log-return time-series of T = 44720 observations
times each. Log-returns of asset i at observation times t are defined by

xi
t ≡ ln Si

t − ln Si
t−1 , (19)

after subtraction of the mean and normalization to unit variance. Si
t is the

price of asset i at time t. The empirical time-series and their distribution-
functions show the usual ‘stylized facts’ of high-frequency stock-returns (fat-
tails, clustered volatility, equal-time correlation matrix element distribution,
etc.).

Fig. 3 shows the eigenvalue spectrum obtained from C1 at various stages.
In Fig. 3(a) a few deviations from the bulk of the eigenvalues are seen, most
significantly one real eigenvalue λ1 ≈ 4.6 and a conjugate pair of complex
eigenvalues at λ2 ≈ 1.2. Fig. 3(b) is a detail of (a) where a shift of the
bulk of the eigenvalues with respect to the theoretical support (circle) is
observed. This shift can be attributed to two effects: First, each deviating
positive real eigenvalue λ̃i is associated with a shift s of the ‘bulk’ spectrum
of s ≈ − Re(λ̃i)/N in direction of the negative real axis. (‘Departing’
eigenvalues are those which have real parts larger than the radius of the
theoretical support.) The shift of the ‘disc’ pertaining to this effect is then

the sum of all effects from departing eigenvalues, stot = − 1
N

∑

λ̃i
Re(λ̃i) ≈

−0.031. The second contribution to the shift is due to the non-zero diagonal
entries of the correlation matrices C1. The shift of the center of the disk
explainable by the mean of the diagonal elements is C̄ii

1 = −0.029, such that
the overall displacement is d = stot + C̄ii

1 = −0.060. When corrected for the
total shift one arrives at Fig. 3(c). The eigenvalues outside the theoretical
regime should be associated with specific non-random structure present in
the high-frequency return time-series. An in-depth analysis of the deviating
eigenvalues and their meaning is presented in [9].
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Fig. 3. Eigenvalue spectra of lagged correlation matrices from 5 min S&P500

data [9]. (a) shows the full spectrum with one very large deviation on the real

axis (λ1 ∼ 4.6), and a large departing eigenvalue pair λ2 = λ∗

3
. (b) is a detail,

clearly showing that the spectrum is shifted with respect to the ‘bulk-disc’. (c)

spectrum corrected for displacement d as discussed in the text. The circles in plots

indicate the support discussed in Section 2.

Fig. 4 compares predictions from Section 2 with the projections of empir-
ical eigenvalue data onto the real and imaginary axis. The inset shows the
prediction of the radial density, integrated over the complex plane, 2rπρ(r),
compared with the empirical data, ρ(|λ|). Empirical spectra are truncated

Fig. 4. Projection of the empirical spectrum pertaining to Fig. 3(c) on the real

and imaginary axis [9]. The line is the analytical solution discussed in Section 2.

The inset shows the empirical distribution of ρ(|λ|) compared with the analytical

analogue 2rπρ(r).
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at Re(λ) = 1. Given the modest eigenvalue statistics (Nλ = 400) and the
significant deviations outside the theoretical support, the agreement between
the theoretical predictions for Gaussian noise and the bulk of the empirical
data is rather satisfying.

4. Conclusion

We applied random matrix theory to lagged cross-correlation matrices
and theoretically derived the eigenvalue spectra emanating from the respec-
tive real asymmetric random matrices in dependence of the information to
noise ratio, Q. Specifically, we have shown that in the case of any eigen-
value ‘gas’ satisfying circular symmetry an inverse Abel-transform can be
used to reconstruct the radial density, ρ(r), from rescaled projections of the
symmetrized problem. Based on these theoretical results we showed eigen-
value spectra associated to empirical cross-correlations of 5 min returns of
the S&P500. For the full time-period observed, we found remarkable devia-
tions, unambiguously demonstrating the inadequacy of the efficient market
hypothesis at short time-scales.
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support from the Austrian Science Fund under FWF projects P17621-G05
and P19132. C.B. would like to thank J.-P. Bouchaud for most valuable
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