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We discuss a mechanism of double protection of the Higgs potential by
supersymmetry and by a global symmetry. This occurs in supersymmetric
models in which the Higgs boson is a Goldstone boson of a spontaneously
broken approximate global symmetry, as in little Higgs. In such models the
parameters of the electroweak sector require no fine-tuning at all.
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1. Introduction

Supersymmetry is a very attractive scenario for physics at the TeV scale.
Unfortunately, its simplest implementation, the MSSM, requires fine-tuning
of parameters once experimental constraints are imposed. The problem can
be summarized as follows. The electroweak scale in the MSSM depends
on the Higgs soft mass term m2

H
, which receives radiative corrections when

supersymmetry is broken. The largest correction is due to top/stop loops

δm2
H ≃ −

3y2
t

8π2
m2

t̃
log

(

Λ2
UV

m2

t̃

)

, (1)

where yt is the top Yukawa coupling, m
t̃

is the stop mass (for simplicity,
we consider degenerate left and right-handed stops and ignore stop mixing),
and ΛUV is the high energy scale at which the soft masses are generated.
For large values of ΛUV (for example ΛUV ∼MPlanck as in gravity mediated
supersymmetry breaking), the suppression due to the loop factor is canceled
by the large logarithm, and we obtain δm2

H
∼ m2

t̃
. Therefore, for the MSSM
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to be a natural theory the superpartner mass scale MSUSY should be of
the order of the Higgs mass and the electroweak scale, MEW ∼ 100GeV.
Direct searches, limits from precision electroweak and flavor constraints do
not confirm this expectation. Most importantly, in the MSSM the lower
bound on the mass of the Higgs boson implies the limit on the stop mass,
m2

t̃
& (1TeV)2. This means that radiative corrections to MEW are at least

hundred times larger than MEW itself. In other words, fine-tuning in the
MSSM is 1% or worse.

We conclude that the MSSM is not a natural theory. This is a serious
problem, as naturalness was the main motivation to introduce the whole
theoretical framework of supersymmetry! If we believe that supersymmetry
is a solution to the gauge hierarchy problem we need to search for exten-
sions of the MSSM that could accommodate the modest hierarchy of scales,
MSUSY & 4π MEW, without fine-tuning.

Improving naturalness of supersymmetric theories with heavy superpart-
ners therefore requires removing the large logarithm. Two possibilities sug-
gest themselves. One is to lower the scale ΛUV down to 1–100TeV range.
This can be achieved in scenarios in which supersymmetry breaking is me-
diated at a low scale, such as gauge mediation or theories with large extra
dimensions. The other possibility [1–7] is to treat the Higgs differently from
the superpartners by making it a pseudo-Goldstone boson. In this approach,
radiative corrections to the Higgs soft mass are finite because they are “dou-
bly protected” by softly broken supersymmetry and by a global symmetry.
At tree-level the soft mass of a doubly protected Higgs vanishes, while the
dominant radiative correction has the form

δm2
H ≈ −

3y2
t

8π2

[

(m2

t̃
+ m2

T) log(m2

t̃
+ m2

T)−m2

t̃
log(m2

t̃
)−m2

T log(m2
T)
]

, (2)

where mT is the mass of the top quark’s heavy partner whose presence is
required by the global symmetry.

In the remainder of this article we explore the mechanism of double
protection, that occurs in models combining supersymmetry with a global
symmetry. The global symmetry is broken both spontaneously and explic-
itly, in a similar fashion as in little Higgs theories [8]. The marriage between
supersymmetry and little Higgs yields a framework referred to as Little Susy.

2. Doubly protected electroweak breaking

For double protection to be implemented a model at the TeV scale should
have the following features:

1. Supersymmetry softly broken at the scale MSUSY of order TeV.

2. An approximate global symmetry of the Higgs potential.
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3. Spontaneous breaking of the global symmetry at a scale of order TeV.

4. Interactions between the Higgs and the top sectors explicitly and softly
breaking the global symmetry.

In the present context, soft breaking of a global symmetry means that the
mass parameter MG breaking explicitly the global symmetry does not break
supersymmetry and, simultaneously, the soft supersymmetry breaking terms
preserve the global symmetry. Models with the features 1–4 exhibit no

one-loop divergent corrections to the Higgs potential from the top sector.
This surprising result follows from a simple dimensional analysis. Quadratic
divergences are of course forbidden by supersymmetry. Typically, we would
expect the Higgs mass parameter to be logarithmically divergent, δm2

H
∼

M2
SUSY

log ΛUV. However, in Little Susy this is not allowed as the corrections
to the Higgs mass must be proportional to a parameter that breaks the global
symmetry (if the global symmetry were exact the Higgs would be exactly
massless to all orders). At the same time δm2

H
∼ M2

G
log ΛUV also cannot

occur, as the Higgs mass must be proportional to a parameter that breaks
supersymmetry.

Let us now be more explicit about the global symmetry we need. The
two MSSM Higgs SU(2)weak doublets Hd, Hu are combined with SM singlet
fields Su and Sd into multiplets φu, φd of a global symmetry whose SU(2)weak

is a subgroup.

Hd → φd = (Hd, Sd) , Hu → φu = (Hu, Su)T . (3)

We assume that |φu|
2, |φd|

2 and φdφu are invariants of the global symmetry.
Next, the global symmetry is spontaneously broken by vevs of the SM sin-

glet fields 〈Su〉 = fu, 〈Sd〉 = fd. It is well known that spontaneous breaking
of a global symmetry implies a presence of a multiplet of massless scalars Ha

called the Goldstone bosons. These are excitations along the spontaneously
broken directions in the group space and can be parameterized as

φu → eiH
a
T

a

(0, 〈Su〉)
T , φd → (0, 〈Sd〉)e

−iH
a
T

a

, (4)

where T a are the broken generators of the global symmetry. The point
about this parametrization is that the global symmetry group invariants
|φu|

2, |φd|
2 and φdφu, do not depend on Ha. We assume that the Higgs

potential respects the global symmetry, that is, it depends only on these
invariants. This ensures that the Goldstone bosons are massless at tree level
(in fact, it implies that the potential for the Goldstones is exactly flat).
A subset of the Goldstone bosons is identified with the SM Higgs field H.
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We move to discussing the radiatively generated Higgs potential. We
assume here that the loop corrections to the Higgs potential come mostly
from the top sector, which consists here of the SM top t and its heavy
partner T. It turns out that the global symmetry and its soft breaking imply
a relation between the masses of the two quarks in the presence of the
electroweak breaking vev H:

m2
t (H) + m2

T(H) = m2
T , (5)

where the right hand side does not depend on H. Thus, we can parameterize
the top quark masses squared as:

m2
t (H) ≈ y2

t |H|
2 +O

(

H4

f2

)

, m2
T(H) = m2

T −m2
t (H) . (6)

Of course, the mass of the light top is proportional to the Higgs vev. The
masses of the supersymmetric partners of the top quarks are in addition sen-
sitive to the supersymmetry breaking terms. Assuming universality of stop
soft masses and negligible stop mixing1 the stop masses can be written as

m2

t̃
(H) ≈ m2

t̃
+ m2

t (H) , m2

T̃
(H) = m2

t̃
+ m2

T(H) . (7)

Inserting the top and stop masses into the Coleman–Weinberg formula

VCW =
1
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[
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]

(8)

we obtain
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Expanding in powers of the Higgs field we easily find

V (H) = δm2
H |H|

2 + δλ|H|4 + . . .
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. (10)

1 These assumptions facilitate the computation of the effective potential but are not

crucial for implementing double protection. The sufficient condition is that the soft

terms respect the global symmetry.
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As in the MSSM the mass correction from the top sector is negative and
may trigger the electroweak breaking. Little Susy renders it with the double
protection structure: it vanishes in the supersymmetric limit m

t̃
→ 0 as

well as in the globally symmetric limit mT → 0. For mT ≫ m
t̃

we find
δm2

h
≈ −3/(8π2)y2

t log[(m2
T
)/(m2

t̃
)] which shows that the additional top and

stops cut-off the log divergence of the MSSM. For mT ∼ m
t̃
∼ 1TeV we find

δm2
H ∼

m2

t̃

4π
, (11)

which removes the fine-tuning problem.
The correction to the quartic Higgs terms is qualitatively similar to that

in the MSSM: it behaves as δλ ∼ 3/(16π2) y4
t log [ (Min(m2

t̃
,m2

T
))/(m2

t ) ].
By itself, this term is not enough to push the Higgs boson mass above the
experimental limit. To make the theory phenomenologically viable we need
additional tree-level contributions to the Higgs quartic term.

3. Finding Little Susy

We have argued that supersymmetry combined with a softly broken ap-
proximate global symmetry at the TeV scale ameliorates the fine-tuning
problem. However, constructing an explicit model that realizes this scenario
and is consistent with all experimental constraints is not so easy. First of all,
a global symmetry with desired features is not radiatively stable. Indeed, the
MSSM Higgs doublets are charged under the SM gauge interactions, while
their partners that acquire the global symmetry breaking vevs must be SM
singlets (otherwise their vevs would contribute to W and Z masses). Renor-
malization effects split the soft masses in the global multiplets and lead to
tree-level contributions to the would-be Goldstone masses. Therefore, we
need a mechanism to protect the global symmetry. The second problem is
that in order to satisfy the experimental constraints on the Higgs boson mass
we need a tree-level Higgs quartic term. Such term also breaks the global
symmetry and we must find a way of introducing it without generating large
contributions to the tree-level Higgs mass parameter at the same time.

How can we protect the global symmetry? This symmetry should relate
an SU(2)weak doublet H to SU(2)weak singlet field(s) S. Two possibilities
suggest themselves:

1. There exists a gauge symmetry G which is broken to SU(2)weak at
a higher scale. H and S could then be unified into one multiplet of G.

2. There exists a discrete symmetry, that acts as H ←→ S. If this is the
case there must be another SU(2) gauge symmetry acting on S, with
Z2 interchanging the two SU(2)’s.

Both cases require extending the SM gauge symmetry, though for different
reasons.
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The first possibility was explored in Refs. [3–5]. In those papers the
gauged SU(2)weak is enlarged to a gauged SU(3)weak as in the simplest little
Higgs [9]. The Goldstone bosons then arise because the SU(3)weak gauge
symmetry is broken spontaneously to SU(2) by two different sets of fields.
If the coupling between these two sets of fields is sufficiently weak, then the
theory has an approximate SU(3)2 symmetry which is spontaneously broken
to SU(2)2, yielding two sets of Goldstones, one linear combination is eaten
by the heavy SU(3)weak gauge bosons, the other remains light. A general
problem with this approach is that the SU(3)weak D-terms strongly couple
the two sectors and explicitly break the two SU(3)’s of the Higgs sector to
a single SU(3).

The second possibility, explored in Refs. [6, 7], is based on the idea of
Twin Higgs [10, 11]. The model of Ref. [6] is left–right symmetric with the
gauge group SU(3)C×SU(2)L×SU(2)R×U(1)X as in [11]. The Z2 symme-
try interchanges the left and right SU(2) gauge bosons. Furthermore, every
MSSM field has its Z2 partner. In particular, the Higgs sector consist of
four multiplets: two “left” doublets Hu and Hd and two “right” doublets H̃u

and H̃d. The Z2 symmetry imposed on the Higgs sector is sufficient to guar-
antee an accidental SU(4) symmetry of the dimension 2 terms in the Higgs
potential. Thus even though the Yukawa interactions which renormalize the
Higgs mass terms do not respect the full SU(4) (even after imposing the Z2

symmetry), the resulting corrections to the Higgs masses are automatically
SU(4) symmetric. This is how double protection is realized in this model.
Divergent radiative corrections to soft masses do not lead to masses for the
Goldstones because they respect the full global symmetry. The minimal twin
supersymmetric model shares a problem with the models based on SU(3)weak

group discussed above: some of the quartic couplings in the Higgs sector, in
particular the SU(2)L×SU(2)R×U(1)X D-terms explicitly break the SU(4)
symmetry and lead to large tree-level masses for the would-be Goldstones.
However, this problem can be solved by setting tan β = 1 (which, effectively,
removes the dangerous D-terms) and introducing singlet fields that generate
tree-level quartic terms, as in the NMSSM.

This paper is based on Refs. [2,3,6]. I would like to thank Zurab Berezhi-
ani, Piotr Chankowski, Stefan Pokorski, Martin Schmaltz and Jakub Wagner
for collaboration on Little Susy. I was partially supported by the European
Community Contract MRTN-CT-2004-503369 for the years 2004–2008 and
by the MEiN grant 1 P03B 099 29 for the years 2005–2007.
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