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After revisiting the hierarchy problem of the Standard Model and its
implications for the scale of New Physics, I consider the fine tuning prob-
lem of electroweak symmetry breaking in two main scenarios beyond the
Standard Model: SUSY and Little Higgs models. The main conclusions
are that New Physics should appear on the reach of the LHC; that some
SUSY models can solve the hierarchy problem with acceptable residual fine
tuning and, finally, that Little Higgs models generically suffer from large
tunings, many times hidden.
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1. Hierarchy problem of the SM

It is well known that, although the Standard Model (SM) works ex-
tremely well (at the permille), it is probably not fundamental but rather
an approximate description of particle physics valid up to some high energy
scale Λ, where a more fundamental theory takes over. We do have some clues
about the value of Λ coming from the SM electroweak symmetry breaking
(EWSB) sector. This breaking is described in the SM by a fundamental
doublet scalar with a mexican-hat potential

V = 1
2
m2h2 + 1

4
λh4 . (1)

The Higgs mass parameter m2 is assumed to be negative so that h develops
a non-zero vev that breaks the EW gauge symmetry spontaneously. As m2

is the only mass scale that appears in the SM Lagrangian it sets the scale
of EWSB, with v2 = −m2/λ fixed to ≃ (246 GeV)2 to get right the masses
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of Z0 and W±. The spectrum contains a Higgs boson with mass squared
m2

h = 2λv2 that is unknown but expected to be light from loop effects in fits
to precision EW data.

There is a theoretical problem with this picture of EWSB: m2 is sensitive
to high energy scales through quantum corrections. Loops of W± and Z0

gauge bosons, the top quark and the Higgs itself give a one-loop quadratically
divergent correction to m2. More precisely one gets [1]

δm2 =
3Λ2

64π2
(3g2 + g′2 + 8λ − 8λ2

t ) + . . . . (2)

If one believes that the SM is valid all the way up to the Planck mass,
Λ ∼ MPl, δm2 is huge and has to be balanced with extreme precision against
the tree-level value of m2. This is the Big Hierarchy Problem [2]. If, following
indications from the absence of indirect effects of some non-renormalizable
operators, one believes the SM is valid up to Λ ∼ 10 TeV one still has a
problem (the Little Hierarchy Problem [3]) albeit softer.

Turning the argument around, naturalness of EWSB requires δm2 ∼
λv2 ∼ m2 and an upper bound on the scale of New Physics follows. For
instance,

δm2

m2
< 10 =⇒ Λ <

∼ 2 TeV , (3)

for mh ∼ 130 GeV. The importance of this figure is obvious: it implies that
New Physics beyond the SM should be on the reach of LHC.

This naive estimate has been refined [4, 5] taking into account higher
order effects [for moderate values of Λ the dominant loop corrections are
summed up to leading-log order [6] simply by Eq. (2), but with couplings
evaluated at the high scale Λ] and the sensitivity of m2 to other parameters
besides Λ, like λ and λt. Before presenting the final result let me remind you
how to estimate numerically the fine tuning associated to EWSB. Consider
your favourite model for EWSB, which should give v as a function of some
input parameters pα (usually these are defined at some UV scale). Following
Barbieri and Giudice [7], we adopt as a measure of the fine tuning associated
to pα the quantity ∆pα

defined by δm2/m2 = ∆pα
(δpα/pα) , where δm2 is

the change induced in m2 by a change δpα in pα. For a given model, we can
arrive at a global fine tuning figure by adding the different ∆pα

in quadrature,

∆ ≡
√

∑

α ∆2
pα

[8]. Absence of fine tuning requires ∆ <
∼ O(10), which

corresponds to 10% tuning (roughly speaking ∆
−1 measures the probability

of a cancellation among terms of a given size to obtain a result which is ∆

times smaller. For discussions and refinements see [9]).
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Fig. 1. Upper bound on the scale of New Physics (Λ) from the absence of 1/10

(1/100) tuning. (Improved calculation, including sensitivity to λ and λt, see [14])

Going back to the SM, Fig. 1 shows the fine tuning ∆ = {∆2
Λ

+ ∆
2
λt

+

∆
2
λ}

1/2. One obtains then

Λ <
∼ 3–4 TeV , (4)

(2.5 TeV on average) to avoid more than 10% fine tuning. So, one maintains
the naive expectation that New Physics beyond the SM should be on the
reach of the LHC. (In fact one can even argue that this bound is conservative,
being based on an underestimate of the effect of New Physics [5]. For further
qualifications on the meaning of this kind of analysis see [10].)

Besides the general bound of Eq. (4), more concrete (and solid) implica-
tions from naturalness can be deduced in particular scenarios for the New
Physics beyond the SM. In what follows we consider two scenarios which are
particularly well motivated: SUSY and Little Higgs models. Both of them
try to reduce the sensitivity of m2 to high energy scales Λ by introducing
new particles (so that new loop corrections cancel the SM dangerous contri-
butions) and new symmetries (so that the required cancellation is natural).

2. The SUSY fine tuning problem

In SUSY, the new particles introduced are the superpartners of SM par-
ticles and SUSY ensures the cancellation of quadratic divergences to all
orders! The Higgs mass is protected because SUSY relates the Higgs to chi-
ral fermions, whose mass is under control. However, SUSY must be broken,
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with the new superpartners having masses ∼ m̃ <
∼ 1 TeV. As a result, loops

of particles and antiparticles do not cancel completely and quadratic diver-
gences are replaced by corrections proportional to the soft SUSY breaking
mass scale m̃. For instance, top-stop loops give

δm2 ∼ −
λ2

t m̃
2

16π2
log

M2
mes

m̃2
, (5)

where Mmes is the high energy scale at which SUSY is transmitted to the ob-
servable sector (this log can be interpreted as a RG effect). The improvement
in naturalness with respect to the SM case (with Λ ∼ Mmes) is enormous.
In addition, the negative contribution in (5) explains EWSB dynamically
(i.e. gives a reason for m2 < 0).

Focusing on the Minimal Supersymmetric Standard Model (MSSM), it is
known that EWSB suffers from a residual fine tuning problem. In order for
EWSB to be natural, m̃ <

∼ few hundred GeV is needed in (5), which implies
that superpartners should be not too heavy. Experimental lower bounds
already force the ordinary MSSM to be significantly fine tuned [7, 9, 11].
Consider for instance the upper bound on the lightest Higgs boson mass

m2
h ≤ M2

Z cos2 2β +
3m4

t

2π2v2
log

M2
SUSY

m2
t

+ . . . , (6)

where mt is the (running) top mass (≃ 166 GeV for Mt = 173 GeV). Since
the experimental lower bound, (mh)exp ≥ 115 GeV, exceeds the tree-level
contribution, the radiative corrections must be responsible for the difference,
and MSUSY

>
∼ 3.6 mt is required. This implies sizable soft terms, m̃ >

∼ 2mt,
and then large fine tunings.

The typical tuning in this model is shown in Fig. 2. There are three
main reasons for such large values of fine tuning:

1. In the MSSM, λ is calculable and quite small: ∼ (1/8)(g2 +g2
Y ) cos2 2β

≃ (1/15) cos2 2β. This amplifies whatever cancellations are taking
place inside m2.

2. Although for a given size of m̃ the radiative corrections reduce the fine
tuning, sizable radiative corrections require large m̃. A given increase
in m̃2 reflects linearly in m2 but only logarithmically in λ, so the fine
tuning usually gets worse.

3. Typically, the large logarithms in (5) and the numerical factors com-
pensate the one-loop factor, so that the residual corrections to m2 can
be quite sizable.
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Fig. 2. Solid: Fine tuning (measured by ∆µ2) in the MSSM with universal soft

masses, in the (m̃, tanβ) plane. Dashed: contour lines of constant Higgs mass.

It should be kept in mind, however, that it is not too difficult to come
up with alternative SUSY models which perform better than the MSSM
concerning fine tuning of EWSB. In fact, it is fair to say that SUSY is the
most powerful tool for controlling the naturalness of EWSB. One popular
model is the Next-to-Minimal Supersymmetric SM (NMSSM) which adds a
singlet chiral multiplet to the MSSM. In this model, λ gets larger thanks
to additional F -term contributions from the singlet, improving point (1) of
the list above [12]. One can also consider scenarios with low SUSY breaking
scale (not far from the TeV) in which it is natural [13] to have tree-level
contributions to λ that can make it larger [point (1)]. This helps in evading
the LEP Higgs mass bound without the need of large radiative corrections
[point (2)] and, moreover, in such models RG effects are expected to play
no significant role since the cut-off scale is much closer to the EW scale
[point (3)]. All these three improvements can cooperate to make EWSB
much more natural than in the MSSM [13,14].

3. Fine tuning in Little Higgs models

Little Higgs (LH) models try to solve the Little Hierarchy problem, that
is, to explain the smallness of the Higgs mass compared with 10 TeV. There
are many models in the market but they typically have the following struc-
ture: below Λ ∼ 10 TeV (beyond which some UV completion takes over)
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there are new particles (new gauge bosons, fermions and scalars) that fit
together with the SM particles into multiplets of some global symmetry G,
spontaneously broken at the scale f ∼ Λ/(4π) ∼ 1 TeV. In this process the
new particles gain masses of order f but the SM Higgs is special: besides be-
ing a (pseudo)-Goldstone boson, G is also explicitly broken in a “collective”
way so that mh is suppressed and under control. Diagrammatically, what
happens is that loops of the new heavy particles cancel the quadratic diver-
gences coming from SM loops (the equality of couplings necessary to render
this cancellation natural is ensured by G). As a result, δm2 is not of order
Λ

2/(16π2) but rather f2/(16π2) which is of electroweak size. Parametrically,
this solves the Little Hierarchy problem.

However, a closer look reveals some difficulties. In contrast with the
SUSY solution, the LH cancellation takes place only at one-loop. As an
example, the top quadratic divergence is cancelled by some heavy fermion
with the same quantum numbers and mass MT ∼ f , giving

δm2 ∼ −
λ2

t M
2
T

16π2
log

Λ
2

M2
T

, (7)

where now Λ <
∼ 10 TeV [compare with (5)]. These models are also able to

explain m2 < 0 as the result of the large negative correction shown above
(which is the dominant one). In fact this correction introduces the first
problem: (1) Typically M2

T ≥ O(λ2
t f

2) and one gets δTm2/m2 ≥ O(30).
This number is quite large and points immediately to a fine tuning problem.

This large δTm2 has to be compensated by some other correction, for
instance from new heavy scalar degrees of freedom with a sufficiently large
mass Mφ. In practice, (2) both λ and Mφ come from the same sector of
the model and it is difficult to achieve a large value of Mφ while keeping
λ small [8]. Some cancellation is required and this worsens the total fine
tuning. Finally (3), EWSB requires that some parameters, call them c
generically, are numerically much smaller than its natural value (estimated
by looking at the radiative corrections they receive). Schematically one has
c = c0 + crad ≪ crad. This is a further fine tuning problem.

The problems just discussed seem to be generic and the most popular
Little Higgs models suffer from fine tuning problems [8]. Fig. 3 compares the
fine tuning performance of several Little Higgs models: the Littlest Higgs
[15], a modified version of it [16] (curve labelled “Littlest 2”), a Littlest
Higgs model with T -parity [17] and the so-called Simplest Little Higgs model
[18]. Each curve gives the minimum value of ∆ accessible by varying the
parameters of the model. For comparison, the curve labelled “SM” represents
the fine-tuning of the Little Hierarchy problem in the SM (i.e. with Λ =
10 TeV) and the “MSSM” line shows the fine-tuning of the MSSM. This last
curve has been obtained for large tan β (which minimises the fine-tuning),
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but disregarding stop-mixing effects, which can help in reducing the fine
tuning. Usually, only in a marginal area of the parameter space of each LH
model is the fine-tuning close to the lower bound shown, so the LH curves
in Fig. 3 are very conservative estimates of the fine tuning.
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Fig. 3. Fine tuning performance of different Little Higgs models, compared with

the SM with Λ = 10 TeV and the MSSM (with mt̃ = 1 TeV).

Generically, we see from Fig. 3 that the value of ∆ for all these models
is ≥ O(100) in most of parameter space, and larger that 20–30 in all cases.
Such fine tuning is larger than the MSSM one, at least for the especially
interesting range mh

<
∼ 130 GeV (mh

>
∼ 135 GeV is not available in the

MSSM if the SUSY masses are not larger than ∼ 1 TeV).
I should also emphasise here that in order to compare different LH mod-

els we chose f = 1 TeV (in the Simplest Model there are two breaking
parameters and we chose f1 = f2 = 1 TeV). In some models such value is
already too low and causes problems with precision EW data, which tend
to favour larger values of f (that is, they prefer heavier extra particles) [19].
If one takes into account the constraints from precision EW data in the fine
tuning analysis the results would be much worse: generically the fine tuning
will grow with f as ∆ ∝ f2.

In conclusion, although LH models solve parametrically the Little Hierar-
chy problem these models generically have a substantial fine tuning built-in,
usually much higher than suggested by the rough considerations commonly
made and comparable to the little hierarchy tuning.
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