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Limiting fragmentation in hadronic collisions is analyzed in the frame-
work of the k⊥ factorization and the nonlinear Balitsky–Kovchegov equa-
tion. Reasonable agreement with the experimental data is obtained. It is
concluded that in order to obtain the limiting fragmentation, the factoriza-
tion in the parton distributions in the target and the projectile is necessary
as well as the independence of the parton distributions in the target of the
scales in the process.

PACS numbers: 12.38.Bx, 13.85.Ni

In this talk I discuss the phenomenon of limiting fragmentation. The
hypothesis of this phenomenon was suggested long time ago [1]. The main
statements are:

• For very high energy particle collisions, in the frame where a target or
a projectile is at rest, some of the outgoing particles approach limiting
distributions.

• These distributions represent the broken-up fragments of the target.
The fragments of the projectile move with the increasing velocity as
the energy increases (in the lab frame) and do not contribute to the
limiting fragmentation in this frame. To study these fragments it is
necessary to change a frame to one in which the projectile is at rest.

• In the laboratory frame, the projectile is a highly contracted thin sys-
tem which passes through the target causing excitation and a possible
decay of the target particle.
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• In order to have a limiting distribution one has to assume that the
cross section is approximately constant. More precisely, one has to
assume that the probability of the interaction does not change rapidly
as the energy is further increased.

The limiting fragmentation is confirmed experimentally in a wide range of
processes: proton–proton collisions, proton–nucleus and nucleus-nucleus col-
lisions [2–5]. Recently, BRAHMS and PHOBOS experiments at Brookhaven
National Laboratory performed precise measurements of the multiplicity dis-
tributions in a wide range of the pseudorapidities. The limiting fragmenta-
tion in that case means that, the pseudorapidity distribution of the produced
particles

dN

dη
,

when shifted to a laboratory frame of one of the colliding particles η′ ≡
η − Ybeam (Ybeam = ln

√
s/m, m is a mass of the particle) is independent of

the centre-of-mass energy
√

s i.e.

dN

dη′
(η′,

√
s, b) =

dN

dη′
(η′, b) ,

around η′ ≃ 0 and where b is an impact parameter of the collision.
In this talk, I present the calculation of the rapidity distributions using

a formalism of the k⊥ factorization of the unintegrated parton distributions
and the nonlinear evolution equation to calculate the latter. The k⊥ factor-
ization formula for the single inclusive gluon production reads

dNg

dyd2p⊥
=

αsSAB

2π4C
F
SASB

1

p2
⊥

∫

d2k⊥
(2π)2

φ
A
(x1, k⊥)φ

B
(x2, |p⊥ − k⊥|) , (1)

where SA,B is a total transverse area for hadrons (nuclei) A and B, SAB

is a transverse area for an overlap region, p⊥ is the transverse momentum
of the produced gluon and x1,2 are longitudinal momentum fractions of the
gluons probed in the target and the projectile, respectively. They are defined
as

x1 =
p⊥
m

ey−Ybeam , x2 =
p⊥
m

e−y−Ybeam .

Functions φ(x, k⊥) are the unintegrated gluon distributions in the target and
the projectile which depend on the transverse momentum. These objects are
related to the standard gluon distribution as follows1

xg
(

x,Q2
)

=

Q2

∫

dk2
⊥φ(x, k⊥) .

1 As discussed in [7] the precise definition of the unintegrated gluon distribution may
actually differ from the one used in this paper.
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We calculate the unintegrated distribution using the nonlinear Balitsky–
Kovchegov equation (BK) [8] for the dipole–hadron scattering amplitude T .
The equation in the momentum space takes the following form

∂T̃ (k⊥, Y )

∂Y
= ᾱs(K ⊗ T̃ )(k⊥, Y ) − ᾱs T̃ 2(k⊥, Y ) ,

with ᾱs = αsNc/π and the amplitude T̃ is related to the unintegrated gluon
density

φ(x, k⊥) =
πSANck

2
⊥

2αs

∞
∫

0

r⊥dr⊥J0(k⊥r⊥)[1 − T (r⊥, Y = ln 1/x)]2 ,

together with the Fourier–Bessel transform

T̃ (k⊥, Y ) =

∞
∫

0

dr⊥
r⊥

J0(k⊥r⊥)T (r⊥, Y ) .

The solution to the BK equation is shown in Fig. 1 as a function of the
transverse momentum squared for different values of the rapidity.
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Fig. 1. Solution to the BK equation in the form of the unintegrated distribution

φ(x, k⊥) for different values of the rapidity.

The peak of the distribution is positioned at the saturation scale Qs(Y =
ln 1/x) and the distribution shifts to the higher values of transverse momenta
as the typical x becomes smaller. The distribution φ(x, k⊥) satisfies the
following constraint
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∫

d2k⊥
k⊥

φ(x, k⊥) = const.

In order to obtain the solution to the BK equation we need to specify the
initial conditions at initial value of the rapidity Y0 = ln 1/x0. We choose
the McLerran–Venugopalan (MV) [9] and Golec-Biernat–Wuesthoff (GBW)
[10] as our models with fixed initial value for the saturation scale Qs(x).
The BK evolution should be correct at small values of x where the gluon
density is expected to be very high. At large x we used a phenomenological
extrapolation

φ(x, k⊥) =

(

1 − x

1 − x0

)β
(x0

x

)λ0

φ(x0, k⊥) ,

with φ(x0, k⊥) being the initial condition. We varied the parameters β in
the range 4–5 and λ0 in the range 0.0–0.1, respectively.

How the limiting fragmentation can be understood within this frame-
work? In the situation when x1 ∼ x2, that is in the mid-rapidity regime the
typical scales of two distributions are also comparable QA

s (x1) ∼ QB
s (x2),

and there is an entanglement in the transverse momenta. In the fragmenta-
tion region of one of the particles we have asymmetric configuration x1 ≫ x2

and in this case QA
s (x1) ≪ QB

s (x2). The two distributions φA(x1) and
φB(x2) are separated. Therefore, we can approximate the gluon production
formula with

dN

dy
∼

∫

d2p⊥
p2
⊥

∫

d2k⊥ φA(x1, k⊥)φB(x2, p⊥) ,

consequently the two integrals become factorized. The integral over the pro-
jectile density gives an overall normalization

∫

d2p⊥/p2
⊥
φB(x2, p⊥) = const.,

on the other hand the integral over the target density gives the integrated
parton distribution

Qs(x2)
∫

d2k⊥φA(x1, |k⊥|) = x1 g(x1, Qs(x2)) . (2)

This distribution is evaluated at large values of x1 where we know the
Bjorken scaling holds

x1g(x1, Qs(x2)) = x1g(x1) . (3)

From this we can conclude that

dN

dY
≃ Nx1g(x1) = F (y − Ybeam), x1 ≫ x2
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the rapidity distribution of the produced partons scales with Y − Ybeam

(recall that x1 ∼ exp(Y − Ybeam)).
For comparison with the data one needs to model the parton distribution

φA(x1, k⊥) at large values of x1. Since the distribution x1g(x1) should obey
the x1 scaling:

x1g(x1) = x1g(x1, Q
2
s (x2)) =

Q2
s

∫

dk2φA(x1, k⊥) , (4)

the distribution φA must be very peaked at low k⊥ and have a sharp fall off
at large values of k⊥. Since there is practically no information about the
parton distribution at low k⊥ and large x1 the distribution, φA is the source
of the largest uncertainty when comparing with the data.

To compare with the experimental data one needs to calculate the pseu-
dorapidity distributions dN/dη whereas the k⊥ factorized expression (1)
gives rapidity distribution dN/dy. In order to change from the pseudora-
pidity to the rapidity we need to assume some value for the mass of the
produced particles which we choose to be m ≃ 150–300MeV. In addition
we need to introduce an infrared regulator for the integration over p⊥. We
choose it to be the same value of mass m used in the Jacobian transformation
from η to y.

In Fig. 2 we present the pseudorapidity distributions of the charged par-
ticles which are produced in nucleon–nucleon collisions at UA5 at energies√

s = 53, 200, 546, 900GeV and at PHOBOS with energy
√

s = 200GeV.
The distributions are presented as a function of the shifted pseudorapidity
variable η − Ybeam. Apart from the parameter λ0 we also have the pa-
rameter λs ≃ 4.88ᾱs which controls the growth of the gluon density in the
BK equation. By changing αs we effectively change the intercept of the
hard Pomeron. Since the BK equation was derived within the LLx approx-
imation by reducing the value of the αs we effectively take into account
subleading corrections. Plots are shown for different values of parameters
λ0, λs as well as different models for the input distribution at large x. We
clearly see that the GBW model is favored over the MV model, which can
be easily understood since the φA distribution from the MV model has a
large k⊥ tail which should not be present at large values of x. This means
that effectively the MV model does not satisfy condition (4) at large x re-
quired to get the observed limiting fragmentation. The models describe the
data in the fragmentation region quite well, but there is a discrepancy at
the mid-rapidity. This can be due to the fact that the formalism of the k⊥
factorisation is not applicable at this region, and other contributions which
violate the factorization should become important at the mid-rapidity. In
Fig. 3 we show the comparison of the calculation with the nucleus–nucleus
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data from PHOBOS. We observe a good agreement of the calculations in
the fragmentation region and a discrepancy at the mid-rapidity as already
observed in the proton–proton case.
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Fig. 2. Pseudorapidity distributions dN/dη for charged particles from nucleon-

nucleon collisions at energies
√

s = 53, 200, 546, 900 GeV. Data are from UA5 [2]

and PHOBOS [4]. Initial distributions for the BK equation are from the MV

model [9] (upper plots) and GBW the model [10] (lower plots).
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Fig. 3. Pseudorapidity distributions normalised by the number of participants for

charged hadrons in gold–gold collisions. The data are from RHIC [4–6]. The c.m.s

energies are
√

s = 19.6, 62.4, 130, 200 GeV.
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We also present the extrapolations of the calculations to the LHC en-
ergies. In Fig. 4 we show the curves for the nucleon–nucleon case at

√
s =

14TeV and in Fig. 5 we show the extrapolation to
√

s = 5.5TeV for gold–
gold collision. The large band on the plot for nucleus–nucleus collision
corresponds to the theoretical uncertainty.
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Fig. 4. Predictions for the pseudorapidity distributions in proton–proton collisions

at high center-of-mass energies
√

s = 2, 8, 14 TeV for the GBW input model.
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Fig. 5. Extrapolation of the calculations for gold–gold collisions to the LHC energy.

The band is an estimate of the theoretical uncertainty in our calculations.

In summary, we have presented the description of the limiting fragmenta-
tion distribution using the k⊥ factorization and the gluon density calculated
from the nonlinear evolution equation. We conclude that the observed limit-
ing fragmentation is the result of the factorization of the parton distributions
in the target and the projectile at large rapidities. The multiplicity distribu-
tion at large rapidity seems to be directly proportional to the distributions
of the parton denstiy in the target. This parton density is independent of
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the scales in the process and consequently of the c.m.s energy in the pro-
cess. The presented analysis implies that the limiting fragmentation arises
because the rapidity distribution of the produced particles is determined
essentially by the form of the initial hadron states.

This work was performed in the collaboration with Francois Gelis and
Raju Venugopalan [11]. Supported by the Polish State Committee for Sci-
entific Research, KBN grant No.1 P03B 028 28.
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