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We present a method including continuum effects into nuclear structure
mean-field calculations. We solve the Hartree-Fock-Bogoliubov problem in
a basis made of the eigenstates of a Woods—Saxon potential. We show that
the properties of stable nuclei remain unaffected, while the characteristic
features of weakly-bound nuclei are correctly reproduced. We finally discuss
the relevance of continuum effects on various nuclear observables.

PACS numbers: 21.10.-k, 21.60.—n, 21.60.Fw

1. Introduction

With the on-going development of radioactive beam facilities, it has be-
come possible to study properties of atomic nuclei with a large excess of
one type of particle. This asymmetry results in the Fermi level being very
close to the continuum threshold. It has long been expected that this would
influence significantly nuclear pairing properties, in turn affecting even very
basic properties of nuclei such as the binding or separation energies [1].

In the mean-field approach to the nuclear structure, continuum effects
are often taken into account by enclosing the nucleus in a box with bound-
ary conditions on the walls of the box [2]. This leads to a discretization of
the continuum of positive energy states (quasi-bound states). The Hartree—
Fock (HF) or Hartree-Fock—Bogoliubov (HFB) equations are then solved
numerically on a lattice. Recently, an approach based on a local scale trans-
formation of the harmonic oscillator wave-functions was also proposed [3].

In this paper we revisit the basis-expansion method by constructing a ba-
sis tailored to include continuum effects. We choose all negative-energy and
a selected set of quasi-bound positive-energy eigenstates of a Woods—Saxon
potential, thus assuring that the basis wave-functions are associated with a
realistic potential but also possess good asymptotic properties.

* Presented at the Zakopane Conference on Nuclear Physics, September 4-10, 2006,
Zakopane, Poland.

(1143)



1144 N. ScHUNCK, J.L. EGIDO

2. Description of the method

We work in the spherical HFB approximation with the finite-range ef-
fective interaction of Gogny [4]. This force presents the advantage to treat
both the particle-hole (mean-field) and particle—particle channel (pairing)
on the same footing and with the same parameters for the interaction. The
HFB equations are solved in the basis of the eigenstates of the Woods—
Saxon potential. The latter are determined by numerical integration of the
Schrodinger equation on a spatial grid of points with a mesh size h (typi-
cally, h = 0.10 fm). Boundary conditions of the Cauchy type are imposed
at r =0 and r = Rpox (typically Rpox = 20 fm). For positive-energy states,
this automatically selects only those wave functions that have a node on the
walls of the box.

In the case of spherical symmetry, the matrix elements of the Hamilto-
nian factorize into a radial and angular part. The full basis wave functions,
including the spin degree of freedom 5, thus read 1 (7, 5) = Rpe(r)Vim(0, ¢, 5),
where the R,,(r) are the radial wave functions and the Y;n(0,¢,5) the
tensor spherical harmonics [5]. In the standard case of the harmonic oscil-
lator, where the wave functions are known analytically, the radial matrix
elements are calculated by Gauss—Hermite quadrature. In the case of the
Woods—Saxon basis, we calculate each radial matrix element by numerical
integration using a Simpson 3/8 rule [6].

Tests were performed in the harmonic oscillator basis [7], where we can
in the same time benchmark our program with the published results of [4],
and where we can use, alternatively, Gauss—Hermite numerical integrations.
We found that the replacement of “exact” integrations by numerical methods
does not change the total HFB energy by more than a few keV. Moreover,
the shell structure, the r.m.s. radii and all other quantities related e.g. to
pairing are also unaffected.

More importantly, HFB calculations done in the two bases, HO and
WS, for stable nuclei such as e.g. 160 or 2°8Pb yield remarkably close re-
sults as long as ground-state observables are concerned. Again, the nuclear
binding energy or quantities such as the pairing gap or r.m.s. radius are
practically unchanged when working in the WS basis. Only the position
of the quasi-bound states, which are anyway a numerical artefact of the
box-discretization method, is strongly influenced.

3. Results and discussion

By construction, our method is tailored to describe weakly-bound sys-
tems. Figure 1 shows the neutron density in the neutron-rich '3?Sn, 1°°Sn
and '"Sn calculated using both the HO (squares) and WS (circles) basis —
more technical information in the caption to the figure. In both cases, a box
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of 20 fm was used to generate the basis states. The HO curves show an
unphysical drop of density at large distance due to an improper asymptotic
behavior. Conversely, calculations performed in the WS basis are capable
to reproduce the characteristic long tails of neutron-rich nuclei.
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Fig. 1. Neutron density in several neutron-rich Sn isotopes as function of the ra-
dius. Curves marked with squares were obtained in the WS basis with £y, = 10
and Npmax = 20 while curves marked with a circle were obtained in the harmonic
oscillator basis with Ny, = 20.

Figure 1 shows that our method is well-suited to describe neutron-rich
nuclei indeed. Moreover, by construction, it is also particularly appropriate
to compare the two different techniques, HO- and WS-basis, within the same
framework of the HFB theory. Figure 2 reports the pairing energy in the
chain of sodium isotopes from the proton-rich to neutron-rich nuclei.

It is worth noticing that the type of basis used barely changes the final
result, even in those very neutron-rich nuclei where pairing properties are
expected to be strongly influenced by the continuum. This may imply that,
irrespective of whether the microscopic interaction may or may not describe
ground-state properties correctly, standard HO basis-expansion techniques
can be used at no risk at least in light nuclei. Heavier nuclei with even larger
N/Z ratios are currently under investigation and preliminary results seem
to indicate a more significant influence of the basis.
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Pairing Energy in Na Isotopes - Gogny D1S
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Fig.2. Nuclear pairing energy in the isotopic chain of Na isotopes in the HFB
approach with the D1S Gogny interaction. For the WS-basis calculations, £, =

6, Nmax = 20 while the number of shells is Ng, = 20 for HO-basis calculations.

4. Conclusion

We solve the spherical HFB equations in the basis of the eigenstates of
a Woods—Saxon potential. By construction, this basis imbeds continuum
effects. In light weakly-bound nuclei, only the densities are found to be
altered significantly, while all other quantities are unchanged.
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