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Two separate experiments using the Differential Decay Curve Method
have been performed to extract mean lifetimes of excited states in 106Cd.
The medium-spin states of interest were populated by the 98Mo(12C, 4n)
106Cd reaction performed at the Wright Nuclear Structure Lab., Yale Uni-
versity. From this experiment, two isomeric state mean lifetimes have been
deduced. The low-lying states were populated by the 96Mo(13C, 3n)106Cd
reaction performed at the Institut für Kernphysik, Universität zu Köln.
The mean lifetime of the Iπ = 2+

1 state was deduced, tentatively, as
16.4(9) ps. This value differs from the previously accepted literature value
from Coulomb excitation of 10.43(9) ps.
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1. Introduction

In terms of low-lying excitations, the cadmium nuclei are considered
some of the best examples of quasi-vibrational nuclei (see reference [1] and
references therein). However, from the systematics of the B(E2) values
of the Iπ = 2+

1 → 0+
1 and Iπ = 4+

1 → 2+
1 transitions in 104−110Cd [2],

the B(E2) values in 106Cd appear to be larger than the systematic trend
of the light cadmium isotopes, whose B(E2) values decrease, approaching
102Cd [3]. Within the medium-spin regime, it is evident that there are
collective structures with occupation of at least one νh11/2 orbital [4].

This paper summarises two experiments using the Recoil Distance Method
(RDM) and Differential Decay Curve Method to determine B(E2) values for
various transitions in 106Cd.

2. Experimental details

2.1. DDCM experiment of the medium-spin states in 106Cd

For population and analysis of the medium-spin states in 106Cd, an ex-
periment was performed at the Wright Nuclear Structure Laboratory, using
the New Yale Plunger Device [5] and SPEEDY γ-ray array [6] consisting of
seven HPGe clover detectors, four at 41.5◦ and three at 138.5◦, with both
angles relative to the beam axis. The 98Mo(12C, 4n)106Cd reaction channel
was utilised, with E(12C)LAB = 60MeV. Further details of the experiment
can be found in [7].

2.2. Lifetime determination of isomeric states in 106Cd

The deduction of the Iπ = 9− and 8− isomeric state lifetimes was per-
formed using the 330µm and 2008µm target-stopper distances from the Yale
experiment. The lifetime of the Iπ = 9− state at Ex = 3678 keV in 106Cd was
deduced by gating on the shifted component of the 646 keV, Iπ = 11− → 9−

transition and projecting, fitting, deconvoluting and normalising the stopped
and shifted components of the 269 keV, Iπ = 9− → 7− transition, as detailed
in [8]. The deduced mean lifetime, τ , of the Iπ = 9− state at Ex = 3678 keV
is 0.89(20) ns.

A similar procedure was performed for the mean lifetime of the Iπ = 8−

state at Ex = 3507 keV in 106Cd by gating on the shifted component of the
598 keV, Iπ = 10− → 8− transition and projecting, fitting, deconvoluting
and normalising the stopped and shifted peaks of the 188 keV, Iπ =8− → 6−

transition. The deduced mean lifetime of the Iπ = 8− state at Ex = 3507 keV
is 1.7(5) ns.

2.3. DDCM experiment of the low-spin states in 106Cd

A second experiment was performed at the Institut für Kernphysik,
Universität zu Köln, which utilised the Köln plunger and the 96Mo(13C, 3n)
106Cd reaction at E(13C)LAB =43MeV. In this experiment, twenty distances
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were measured, eight of which (6µm, 8µm, 13µm, 16µm, 18µm, 21µm,
25µm and 37µm) are used in the preliminary analysis presented here. The
reaction γ rays were detected using seven individual segments of one ger-
manium cluster detector (one segment was at an angle of 0◦ and the other
six segments were at an angle of 34.5◦ relative to the beam axis) and five
additional single crystal germanium detectors, each at an angle of 141.5◦

relative to the beam axis.
For both experiments, prompt coincidences were sorted into angle-de-

pendent γ–γ matrices and were analysed with the TV matrix viewer [9].
The lifetimes were deduced by using the Differential Decay Curve Method
(DDCM) [10].

2.4. Preliminary analysis of the Iπ = 2+
1 state lifetime

From the Köln experiment, three separate 1 keV wide energy coincidence
gates were placed on the backward shifted component of the 861 keV, Iπ =
4+
1 → 2+

1 transition. Projecting, fitting, deconvoluting and normalising the
stopped and backward shifted components of the 633 keV, Iπ = 2+

1 → 0+
1
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Fig. 1. Left: Projection and deconvolution of the stopped and backward-shifted

components of the 633 keV, Iπ =2+
1 → 0+

1 transition in 106Cd. The gate was set on

the backward-shifted component of the 861 keV Iπ =4+
1 →2+

1 transition for a series

of distances between 6µm and 37µm. Right bottom: Normalised intensities of the

stopped (decreasing as a function of distance) and shifted (increasing as a function

of distance) components of the 633 keV Iπ =2+
1 →0+

1 transition. Right top: Corres-

ponding mean lifetimes at each individual distance measured. The weighted mean

lifetime of this particular gate for the Iπ =2+
1 state at Ex =633 keV is 16.7(16) ps.
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transition yields mean lifetimes of 15.5(14) ps, 16.7(16) ps (see Fig. 1) and
17.4(19) ps. The weighted mean of these values yielded a mean lifetime of
the Iπ = 2+

1 state of 16.4(9) ps.

3. Discussion and conclusion

For the isomeric states, the Iπ = 9− and Iπ = 8− mean lifetimes of
0.89(20) ns and 1.7(5) ns compare well to the previously reported values of
1.0(+2,-4) ns and 1.7(6) ns deduced by the “centroid shift method” [11]. For
the Iπ = 2+

1 state, the mean lifetime of 16.4(9) ps, presented here, differs
from the literature value of 10.43(9) ps deduced from Coulomb excitation
[2].

S.F.A. would like to acknowledge financial support from EPSRC DTG
studentship. Work supported in part by the US DOE under grant nos
DE-FG02-91ER-40609 and DE-FG02-88ER-40417. P.H.R. would like to ac-
knowledge financial support from EPSRC and the Yale University Flint and
Science Development Funds. J.J. and A.L. would like to acknowledge finan-
cial support from the Deutsche Forschungsgemeinschaft.

REFERENCES

[1] S.W. Yates, J. Phys. G31, S1393 (2005).

[2] 104Cd: G.A. Müller et al., Phys. Rev. C64, 014305 (2001);
106Cd: M. T. Esat et al., Nucl. Phys. A274, 237 (1976);
108Cd: I. Thorslund et al., Nucl. Phys. A564, 285 (1993);
110Cd: S. Harissopulos et al., Nucl. Phys. A683, 157 (2001).

[3] N. Boelaert, Masters Thesis, Universiteit Gent, Belgium, 2006.

[4] 106Cd: P.H. Regan, et al., Nucl. Phys. A586, 351 (1995);
108Cd: M. Piiparinen, et al., Nucl. Phys. A565, 671 (1993);
110Cd: S. Juutinen et al., Z. Phys. A336, 475 (1990);
S. Juutinen, et al., Nucl. Phys. A573, 306 (1994).

[5] R. Krücken, J. Res. Natl. Stand. Technol. 105, 53 (2000).

[6] C.W. Beausang et al., Nucl. Instrum. Methods A452, 431 (2000).

[7] K. Andgren, et al., J. Phys. G 31, S1563 (2005).

[8] S.F. Ashley, Ph.D. Thesis, University of Surrey, UK, to be submitted.

[9] J. Theuerkauf, TV, unpublished, http://www.ikp.uni-koeln.de/∼fitz

[10] A. Dewald et al., Z. Phys. A364, 163 (1989); G. Böhm, et al., Nucl. Instrum.
Methods A329, 248 (1993).

[11] W. Andrejtscheff et al., Nucl. Phys. A437, 167 (1985).


