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There is an increasing number of theoretical predictions suggesting that
many nuclear states should be characterised by spatial tetrahedral and/or
octahedral symmetries. One of the most crucial points in this domain of
research is how to demonstrate the existence of this new exotic quantum
mechanism through experiment. We discuss in some detail how the rota-
tional properties of tetrahedral nuclei can be used to pin down the presence
of the tetrahedral symmetry in sub-atomic universe.

PACS numbers: 21.10.–k, 21.60.–n, 21.60.Fw

1. Introduction: Nuclear point-group symmetries

The studies of nuclear geometrical symmetries have been focused over
many years on the spherical-prolate-oblate shape coexistence, on triaxial
and on mass asymmetric deformations such as pear-shape superposed with
the axial-quadrupole-deformations. The point-group symmetries associated
with those studies belong to the poorest in symmetry elements: D2-group
for the tri-axial nuclear forms and C∞-group for the axially symmetric ones.
A part of this evolution was the discovery of the nuclear super-deformation.
Yet from the symmetry point of view, the latter discovery brought no news
about possibly richer symmetries.
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The point-group symmetries play a very important role in molecular
and condensed matter physics and so far much less so in sub-atomic physics.
One of the greatest successes of the point-group symmetries in molecular
spectroscopy is to provide the understanding of the characteristic energy-
level degeneracies, the latter serving in fact as signals of the symmetries [1].
Indeed, suppose that group G = {ĝ1, ĝ2, . . . ĝf} is composed of symmetry

elements ĝi of Hamiltonian Ĥ so that

[

Ĥ, ĝi

]

= 0 i = 1, 2, . . . f . (1)

If this happens we say that G is the symmetry group of the studied system.
Suppose that G has irreducible representations, say, R1,R2, . . . Rr of di-
mensions d1, d2, . . . dr, respectively. Under these conditions one can show a
property of primordial importance in spectroscopy: The eigen-values of the
problem

ĤΨ (i)
νi

= E(i)
νi

Ψ (i)
νi

for i = 1, 2, . . . r , (2)

form multiplets, above enumerated with the index “i”, with degeneracies
equal to one of the dimensions d1, d2, . . . dr, respectively. Since the num-
ber of point-groups of potential importance for sub-atomic physics is finite
and since all corresponding mathematical properties are very well known,
the degeneracy pattern predicted by the point group theory can indeed be
used to help identifying the symmetry in question through experiment. In
molecular physics such a comparison can be seen as a direct one, Ref. [1]; in
sub-atomic physics the situation is quite different.

In molecular quantum systems there are several symmetry aspects that
intervene simultaneously and have direct impact on the implied spectroscopic
properties. For instance, molecules containing identical nuclei have extra
symmetries related to their exchange properties; odd-A nuclei if present
introduce the effects related to the magnetic moments; the rotational and
vibrational degrees of freedom often mix directly; the electronic spectra are
subject to sub-structures related to the presence of magnetic moments on
the atomic and nuclear scales etc.

In nuclear physics, in contrast, the nucleonic mass distributions are com-
pact and extremely uniform as compared to the molecular systems, the anti-
symmetrisation involves ‘the only like objects’ (nucleons rather than nuclei
and electrons) and the characteristic excitation energies related to rotation,
vibration and the nucleonic excitations are close, within a factor of ten of the
discrepancy range. In the following we address the typically nuclear aspects
of the symmetry problem.
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2. Expected rotational properties of tetrahedral nuclei

Let us begin with a qualitative discussion of a number of geometrical
properties related to classical objects (rotors) with uniform mass distribution
— the properties relevant from the point of view of the tetrahedral symmetry.
These simplified considerations will be followed by gradually more realistic
ones.

2.1. A model of static, rigid, classical two-component rotors

Consider a two-component rotor originally composed of two concentric
spherical mass distributions. Such a system resembles a classical model of an
atomic nucleus composed of Z protons and N neutrons with the two centres
of mass placed at the origin of the coordinate frame. Now let us gradually in-
troduce tetrahedral deformation, say α32, in terms of the spherical harmonic
expansion of the two mass distributions. It is easy to demonstrate that the
positions of the associated centres-of-mass remain unchanged for both sub-
systems, thus implying that there is no induced dipole moment caused by
an increase in the tetrahedral deformation. We conclude that static clas-
sical distributions of protons and neutrons that are tetrahedral-deformed
generate no dipole moments. Similar can be said about the quadrupole
moments: rigid objects with exact static tetrahedral deformation generate
no quadrupole moments, the first non-vanishing ones being Y32 octupole
one. Consequently, in the case of the tetrahedral symmetric shapes there
is, to a leading order, neither dipole nor quadrupole radiation predicted for
the rotating rigid two-component objects discussed here. The only possible
multipole radiation must have the octupole character.

The above result contrasts with an analogous one for a two-component
rotor whose axially symmetric pear-shape octupole deformations are often
described with the help of Y30-spherical harmonic. Indeed, the corresponding
two pear-shape distributions of the un-equal proton- versus neutron-number
systems will generate the centre-of-mass positions that do not coincide. It
then follows that the non-zero overall electric dipole moment is induced.
Generally the stronger the octupole deformation the stronger the implied
dipole-moment polarisation. There is yet another difference when compar-
ing the properties of the simplified models of the octupole and tetrahedral
nuclei discussed so far. The octupole deformation can be superposed with
an arbitrary axial deformation (such as e.g. the quadrupole one) still pre-
serving the octupole symmetry of the resulting objects. This is not true
for the tetrahedral-symmetric shapes for which it is possible to superpose
tetrahedral symmetry components coming from various multipolarities that
are represented by very precise proportions of certain spherical harmonics,
cf. e.g. Ref. [3].
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2.2. A model of quantum rotor-vibrator like nuclei

Let us now relax the condition for the systems in question being rigid,
classical two-component objects and consider instead two quantum mass
distributions (“quantum liquids”) moving while preserving the same shape
symmetries as those discussed so far. In the case of modelling the nuclear
behaviour the two components are expected to move together as an expres-
sion of the short-range character of the nuclear forces what implies that the
proton and neutron deformation parameters can be kept the same. Let us
consider one multipolarity at a time for simplicity. We will shorten the nota-
tion1 by writing αλµ → α. The corresponding systems have been discussed
by Bohr and Mottelson within harmonic approximation [4]. These authors
consider the classical energy and the corresponding Hamiltonian of the form

E(α, α̇) =
1

2
B α̇ 2 +

1

2
C α 2 → Ĥ =

1

2B
∂ 2

∂α 2
+

1

2
C α 2 , (3)

where constants B and C denote the collective inertia parameter and the so
called “stiffness” coefficient, respectively, the latter determining the harmonic-
oscillation potential. The energy solutions are

En =
(
n + 1

2

)
~ω ↔ ω

df.
=

√

C/B . (4)

The normalised wave functions are given by

ϕn(α) =
1

√√
2π2nn!

1

A e−α 2/2σ 2

Hn(α/σ), σ
df.
=

√
2A, (5)

where Hn denotes the Hermite polynomials and the zero-point amplitude A
is defined by

A df.
=

[
〈ϕn=0|α 2|ϕn=0〉

]1/2
=

[
~

2/(4BC)
]1/4

. (6)

The above relations reveal qualitatively a couple of important tendencies:
1. The larger the collective inertia the smaller the corresponding energy
excitations while at the same time. 2. A decrease in either B or C (or both)
will result in an increase of the collective zero-point vibration amplitude.

1 Here and in the following we assume that the nuclear shapes and associated surfaces,
Σ, can be represented in terms of the usual spherical harmonic expansion

Σ : R(ϑ,ϕ) = R0c({αλµ})[1 +
X

λ

X

µ

αλµ Y
∗

λ m(ϑ,ϕ)] ,

where R0 denotes the nuclear radius parameter and function c({αλµ}) assures the
constant volume condition.
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2.3. Dynamical perturbations of the nuclear tetrahedral symmetry

The results of the previous section bring us to yet another, the most
relevant at this point, the dynamical aspects presented shortly below.

Tetrahedral Symmetry Distortions Caused by Dynamical Effects: There
always exists, however small, a non-zero dynamical deformation in any mul-
tipolarity. We can introduce a measure of such a dynamical deformation in
the form of

〈|α|〉 ∼
∫

|α|ϕ 2
n(α) dα . (7)

As a consequence, even though in a tetrahedrally-symmetric, statically de-
formed nucleus many types of vibrations (e.g. quadrupole ones) take place
about the null values of static equilibria, the zero point vibrations average
out leading to a non-zero dynamical equilibrium deformation2.

Tetrahedral Symmetry Distortions Caused by Valence Nucleons: It has
been discussed in preceding publications (cf. e.g. Refs. [3,5]) that there exist
optimal ‘magic numbers’ corresponding to the strongest tetrahedral shape
stability manifested by the deepest tetrahedral energy minima. Conversely,
adding (or taking away) the nucleons to (from) the doubly-magic tetrahe-
dral configurations destabilises the configurations in question, by gradually
bringing in new ‘symmetry polluting’ deformations.

Tetrahedral Symmetry Distortions Caused by Alignment: In rotating nu-
clei, as it is very well known, the Coriolis (or equivalently cranking) terms
in the effective Hamiltonians

ĤCoriolis ∼ −~R · ĵ or ĤCranking ∼ −~ω · ĵ (8)

lead to a decrease in the energy of the system if the individual nucleonic
angular momenta align with the collective rotation ~R (alternatively with the

collective cranking-frequency vector ~ω). In Eq. (8) operator ĵ represents all
the three components of the nucleonic angular momentum. As a consequence
of such an alignment, shape polarisations with the oblate-quadrupole type
components with respect to the collective rotation axis will be expected,
thus bringing yet another contribution to the non-zero quadrupole moment
that is increasing with the total nuclear spin.

To summarise: The non-zero (small) quadrupole deformations are to
be expected in the tetrahedral-deformed nuclei. In the corresponding rota-
tional bands the quadrupole type polarisation is predicted to increase with
increasing spin due to the gradual alignment effects.

2 The above observations apply generally to any shape vibration; here we are of course
particularly interested in the low-energy low-multipolarity oscillations since they give
the most important contribution to the electro-magnetic decay radiation.
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2.4. Consequences of the quadrupole polarisation in tetrahedral nuclei

The corresponding conclusion related directly to the quadrupole defor-
mation has important implications for the induced electric dipole radiation.
Indeed, it can be argued [2] that using a simple modelling of the nuclear
surfaces in terms of the spherical harmonics leads to an estimate for the
electric dipole moment

Q10 ≈ 9/
√

21π ρR 4
0 α2±2 α3±2 , (9)

valid for small deformations.
Now we only need to connect the result in Eq. (9) with the standard

expressions for the electromagnetic transition probabilities. These are very
well known; here we quote them for reader’s convenience. The probability
of the gamma-emission in transitions per second can be expressed by

T (Eγ ;L) =
8π

~c

c

[~c](2L+1)

(L + 1)

L[(2L + 1)!!] 2
E(2L+1)

γ B(L) , (10)

where L denotes the transition multipolarity, Eγ transition energy, and B(L)
the reduced transition probability. Expressing the numerical factor in front

of the product E
(2L+1)
γ · B(L) gives the following result

T (Eγ ;L = 1) = 1.590206 × 1015E 3
γ B(L = 1) , (11)

T (Eγ ;L = 2) = 1.225184 × 109 E 5
γ B(L = 2) , (12)

T (Eγ ;L = 3) = 5.707943 × 102 E 7
γ B(L = 3) . (13)

The above shows that any perturbation of the tetrahedral deformation, be
it statical or dynamical, resulting in a non-zero quadrupole deformation, the
latter inducing both the quadrupole and dipole moments, will immediately
generate the quadrupole and dipole radiation due to the huge factors of the
order of 106 or 1012. They originate from the natural-constant factors that
are about six orders of magnitude stronger for the quadrupole transitions as
compared to the octupole ones, cf. Eqs. (12) and (13) and yet additional six
orders of magnitude stronger when comparing the dipole transitions with
the quadrupole ones, cf. Eqs. (11) and (12).

Consider a rotational band generated by a tetrahedral-deformed nucleus.
At relatively high spins, say I ∼ 20 ~, we should expect that Coriolis induced
quadrupole polarisation whose effect is proportional to I and the implied
dipole moments take relatively ‘large’ values (in relative terms, the Coriolis
polarisation expressed e.g. in terms of polarised quadrupole moment, δQ2µ

at spin I ∼ 20 ~ can be considered significantly larger as compared to the
similar quantity at spin I ∼ 3 − 5 ~).
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All the above observations bring us to the following scenario that can
be associated with the rotation of tetrahedral-symmetric nuclei. Since the
tetrahedral shapes have to a first approximation a non-axial Y32 octupole
structure we expect that the associated bands carry negative parity. Ac-
cording to calculations in Ref. [2] the tetrahedral minima, and thus the
related band-heads, are expected at several hundreds of keV to a couple of
MeV above the yrast line. The higher this excitation energy the stronger
the disadvantages when trying to populate those bands. In particular, the
heavy-ion xn reactions that populate preferentially high-spin low energy
range near the yrast line are likely not to populate such states that are at
relatively high energies and moderate spins. Reactions induced by α- and
other types of light particles are in this respect privileged.

On the other hand, the stronger the excitation of the tetrahedral band
above the yrast, usually ground-state band, the stronger the advantages in
terms of the relatively high-energy electric dipole transitions [Eγ in Eq. (11)]
possibly connecting the tetrahedral-excited and the ground-state bands. At
the highest spins, the quadrupole polarisation induced through zero-point vi-
brations but first of all through angular momentum alignment is expected to
give rise to non-vanishing quadrupole and dipole moments. Their presence
should imply a competition between intra-band E2-transitions within the
tetrahedral band against the inter-band E1-transitions between the tetra-
hedral and the ground-state band. With decreasing spin the intra-band E2
transition energies decrease linearly with (thus the corresponding probabil-
ities as the fifth power of) the transition energy while the inter-band E1
transitions remain of the same order or possibly even increase3. As a con-
sequence the E2 quadrupole transition rates may become so low that the
only transitions seen by the detectors may be those of the inter-band dipole
character.

The scenario described above is precisely what is observed in numer-
ous experiments on 156Gd nucleus whose two respective bands are given in
Fig. 1 — and also in several other nuclei of the Rare Earth range in which
theoretical predictions suggest the presence of the tetrahedral symmetry.

The above observations bring us to the very important conclusion about
the qualitative difference between the electro-magnetic transition proper-
ties of the ‘traditional axial octupole nuclei’ described by Y30 plus axial
quadrupole deformation and the ‘new non-axial octupole nuclei’ described
by Y32 supplemented with the induced polarisation effects. Polarisation due
to the zero-point motion take of course place also for those pear-shape oc-
tupole nuclei as well, yet their role there is to renormalise the (already large)

3 These energy proportions are in fact to be seen in the experimental spectrum of Fig. 1
presented below; the latter demonstrates that the discussed relations give a realistic
representation of the situation encountered in nuclei.
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quadrupole and octupole moments — not leading to any quantitative change.
In tetrahedral nuclei instead, the polarisation effects lead to the entire mod-
ification of the radiation pattern: otherwise absent dipole and quadrupole
transitions — are most likely winning with the octupole ones thanks to the
huge factors in Eqs. (11–13) as discussed above.

Fig. 1. According to theoretical predictions of Ref. [2] the negative parity band

(right) is expected to correspond to a tetrahedral symmetry nuclear shape (left).

As it turns out there are several nuclei close to the ones predicted in
Ref. [2] that actually do manifest the properties discussed qualitatively. An
example of 156Gd nucleus has been studied in about twenty various exper-
iments with varying target-beam combinations and detection systems. In-
variably, the intra-band E2-transitions escape the detectors below Iπ = 9−

state in all experiments to a surprise of the authors. For instance, already in
the early eighties it was noticed by Konijn and co-workers, Ref. [6], an odd-
behaviour of the negative-parity bands in 156Gd, at that time interpreted
as aligned octupole bands: “A striking feature is that the B(E1)/B(E2) ra-
tios are about a factor of 50 higher for the odd-spin negative-parity bands
than those for the even-spin negative-parity bands”. This phenomenon seen
already before in various other nuclei (see references quoted in [6]) received
no adequate explanation at that time and was simply forgotten since then.
A simple explanation of this lack of interest is most likely the rush towards
high spin state studies: in the eighties and nineties, heavier and heavier ion
beams were used with the result of no longer directly populating the single



Nuclear Tetrahedral Symmetry and Collective Rotation 1397

excited negative parity states of interest in the present study. This are these
states, as we suggest, that could have been the first experimental signature
of the tetrahedral symmetry in nuclei.

The qualitative predictions of the tetrahedral band behaviour as far as
the electromagnetic transitions are concerned can be confronted in addition
with the microscopic cranking model prediction. The corresponding results
in the form of comparison between the calculated and measured angular
momentum alignment (total spin) are presented in Fig. 2. The curves were
calculated at the deformation points corresponding closely to the predicted
equilibrium deformations by using the Strutinsky method with the deformed
Woods–Saxon Hamiltonian.

Fig. 2. Cranking-model results with the deformed Woods-Saxon potential, using

universal parametrisation, as the one used in Ref. [2]. The experimental results

are from Ref. [7]. The three curves represent three deformations: tetrahedral,

tetrahedral with a small quadrupole component of α20 = 0.07 and the ground-

state deformation of α20 = 0.25 and a small hexadecapole deformation.

All these results can be seen as strongly encouraging. However, in order
to be able to address the problems of symmetry based on predicted prop-
erties of the rotational spectra yet another method will be needed — the
one that allows to study directly both symmetries of the Hamiltonian and
the corresponding transition probabilities. Such methods have been stud-
ied mainly in the molecular physics; below we wish to discuss the possible
extension of those methods to the nuclear case.

3. Nuclear rotation and tetrahedral nuclei as quantum rotors

There exist well known methods designed to treat collective rotation in
nuclear physics such as nuclear cranking model directly related to the mean-
field approach in both self- and non-self-consistent versions and the so-called
Bohr model that allows in a natural way to treat at the same time a coupling
between collective-rotational and vibrational motion (although in a rather
limited fashion as far as the number of degrees of freedom is concerned).
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3.1. Generalised rotor Hamiltonians

Despite the fact that advanced quantum methods have been developed
to describe the rotational motion on the molecular and subatomic levels,
some opinions found occasionally in the literature stress formal difficulties
related, among others, to the very definition of this concept. An example
of a statement: ‘the concept of rotational motion of an n-body system can,
strictly speaking, be attributed to rigid bodies only’ gives an illustration.
Not entering into the most general context and philosophical background of
the concept of rotation of the interacting many-body systems we limit our-
selves to the nuclear systems whose bulk properties can be described within
the mean-field approach with stationary solutions. Let the Hamiltonian of
an A-body nuclear system be given. It is constructed using the canonically
conjugated nucleonic momentum and position operators, p̂i and x̂i, respec-
tively, and the nucleonic spin operators, ŝi. This mean-field Hamiltonian,
denoted Hmf , can be defined in a given laboratory-reference frame4.

Discussion of the concept of a nuclear collective rotor is facilitated by the
adiabaticity of the nuclear rotation. Here we are concerned with low-lying
nuclear collective excitations, Erot, say at spins that do not exceed I ∼ 20.
They depend somewhat on the nuclear mass and vary between a few keV
for the lowest-lying rotational states in heavy nuclei to the excitations of
the order of some MeV at highly excited states belonging to well developed
rotational bands in lighter nuclei. For a nucleus with a mass A, this implies
still a very low contributions of the rotational energy per nucleon, Erot/A,
that varies from some dozens of eV/nucleon to some dozens of keV/nucleon
depending on the mass range. These can be compared to average energies
of the individual-nucleonic motion in the mean-field potential that amount
to about 25 MeV/nucleon, assuming that the effective mean-field poten-
tial depth is of the order of 60 MeV. This highly pronounced disproportion
between the individual and collective-rotational kinetic energies allows to
treat the rotational degrees of freedom as perturbations and encourages the
formulation of the basic Ansatz of the rotor model

Ĥnucl = Ĥrot + Ĥmf (14)

— the splitting of the nuclear Hamiltonian into the part that focuses on the
individual-nucleonic degrees of freedom, Ĥmf , and Ĥrot responsible for the
energy changes caused by the varying orientation of the system with respect
to the laboratory reference frame.

4 In fact for the ground-states of the even–even systems studied here these two types of
reference frames can be made coincide. For the concept of rotating body-fixed frame
in the case stationary solutions of the mean-field Hamiltonian — see below.
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The mean-field theory framework leads to a natural description of the
spontaneous symmetry-breaking phenomena and in particular to a non-zero
nuclear deformation that allows to introduce the notion of the system’s ori-
entation in space. When this happens for a stationary solution of Ĥmf , we
have a possibility to define the nuclear surface e.g. using the concept of
the equi-density surfaces. By selecting appropriately four position-points on
such a surface we have natural way of defining the associated body-fixed
reference frame and thus the orientation of the body-fixed reference frame
with respect to the laboratory frame. This orientation will be identified with
the orientation of the nucleus with respect to the laboratory frame. The adi-
abaticity of the nuclear collective rotational motion makes us to expect that
the rotating density distribution remains stationary, if not exactly then at
least to a good approximation.

The main idea in constructing the related quantum formalism is to focus
the description on those degrees of freedom that are responsible for the
orientation of the nuclear system in space. Since an orientation of the system
as a whole with respect to a given reference frame is conveniently described
with the help of orientation angles and the associated generators are the
total angular momentum operators the corresponding Hamiltonians can be
constructed using those two classes of objects. A method that is perfectly
suited to examine the effects of point-group symmetries on the rotational
properties of many-body systems has been designed in molecular physics
in the form of what we refer to as generalised rotor Hamiltonian. Here we
wish to present this particular approach in a version adapted to the nuclear
physics applications.

Let us begin by observing that Eq. (14) hides an apparent conflict of
the formulation: the system has 6A degrees of freedom and both the Hamil-
tonian Ĥnucl and the mean-field Hamiltonian Ĥmf depend on all of them.
Therefore, strictly speaking, there is no room for the Euler-angles as vari-
ables or extra degrees of freedom describing the orientation. On the other
hand, the ex-post success of the rotor approximation fully justifies5 the in-
terest in further exploration of the method in question. Consequently, when
using this type of Hamiltonians we have to assume that the rotation and
thus the implied time evolution of the Euler angles is the well defined re-
sult of (perhaps very complicated) interplay among the individual degrees
of freedom. The adiabatic character of the rotational motion as well as the
short-range property of the nuclear interactions that allow to see the nuclei
as relatively compact objects of well defined shape of the density distribution
makes us to expect that such a relation should exist. Since we cannot, at
least for the time being, obtain any formal derivation of the time-evolution

5 Indeed, the particle-rotor coupling models as e.g. in the formulation of Mayer-ter-
Vehn are among those numerically most successful in nuclear structure physics.
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of the Euler angles as functionals of the intrinsic degrees of freedom we may
use another choice: to assume a phenomenological form of the corresponding
Hamiltonian. Its form must be compatible with the above consideration of
the number of degrees of freedom. Since as argued above the rotation can be
treated as perturbation of the individual-nucleonic motion, it is natural to
expect that in most cases its effect will be too weak to cause an extra spon-
taneous symmetry breaking of Ĥmf . In other words: it should be assumed
that symmetries of all the three operators in Eq. (14) are the same.

3.2. Symmetry compatibility between rotor and mean-field Hamiltonians

In the earlier publications, cf. e.g. [2] and references therein, the exotic
tetrahedral and octahedral symmetries have been predicted to be rather
abundant throughout the Periodic Table. These predictions were based on
the nuclear mean-field approach what implies, according to compatibility
principle among the members of relation (14) that the rotor Hamiltonian
suited for our purposes must be tetrahedrally-symmetric as well.

This aspect of high-rank symmetries e.g. tetrahedral or octahedral ones
of the quantum rotor brings us to yet another element of possible confusion
that is found occasionally in the literature. Some generally incorrect state-
ments such as ‘the nuclear rotor Hamiltonian must be a quadratic expression
of angular momentum components (operators)’ and ‘the rotor Hamiltonian
is a function of the inertia tensor’ are a few examples. In nuclear as in
molecular quantum mechanics the rotor Hamiltonian is the energy operator
associated with the varying orientation of the system with respect to the
laboratory coordinate frame. There is a priori no limitation of the form
of this operator as far as dependence in terms of the angular momentum
operators are concerned while the inertia tensor can simply not be defined
in general for numerous situations of interest6.

To present what we call the generalised rotor formalism let us introduce
a basis of the nth order tensor operators

T̂λµ(n; λ2, λ3, . . . λn−1
︸ ︷︷ ︸

{Λ}n

)
df.
=

[(

((Î⊗Î )λ2
⊗Î )λ3

⊗ . . . ⊗Î
)

λn−1

]

λµ

, (15)

where the symbol “⊗” refers to the standard Clebsch–Gordan couplings e.g.

6 For many classes of symmetries that bypass the simple ellipsoidal shapes (e.g. tetra-
hedral or octahedral ones) the standard inertia tensor becomes a multiple of the
unit operator and does not allow to distinguish between various geometries of inter-
est here. In molecular physics, for instance, the description of the degeneracies of
the rotational levels can be seen as a valid motivation for the assumed forms of the
Hamiltonians, cf. Eq. (17) below.
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(Î⊗Î )λ2µ2
=

1∑

µ=−1

1∑

µ′=−1

(1, µ; 1, µ′ | λ2, µ2) Î1µ Î1µ′ ; λ2 = 0, 1 or 2 , (16)

and where Î1µ are the spherical components of the nuclear angular momen-
tum operator. As a technical remark: in Eq. (15) we assume what we call
‘stretched coupling’ i.e. λ2 = 2, λ3 = 3, etc.; it can be shown that this
introduces no loss of generality. In such a case the dependence on the sym-
bol {Λ}n becomes redundant and the notation can be simplified. With the
simplified notation, Eq. (15) can serve to expand an arbitrary operator of
the nth order constructed of the angular momentum components

ĥ(n, λ) ≡
λ∑

µ=−λ

cλµ(n) T̂λµ (n) → Ĥrot =
∑

n

∑

λ

ĥ(n, λ) , (17)

using the numerical expansion coefficients cλµ(n); above the nuclear rotation

Hamiltonian has been denoted by Ĥrot. The coefficients must satisfy certain
additional relations assuring that the final expansion gives an Hermitian op-
erator. In its form of Eq. (17), the Hamiltonian of the rotational motion
is perfectly adapted to building in the required symmetry. Indeed, as dis-
cussed in Ref. [8] the point-group symmetries of the mean-field Hamiltonian
can be conveniently represented with the help of the spherical tensors —
here the same tensor structure of the rotor Hamiltonian is obtained. This
allows to parametrise the symmetry of the mean-field and of the collective
rotor Hamiltonian using the same language of the spherical tensors of the
underlying SO(3) group.

4. Expected rotational properties of tetrahedral nuclei

It will not be possible for us to discuss the present status development re-
lated to the symmetry properties of the nuclear quantum rotor Hamiltonian
and its solutions. We will limit ourselves to a few comments only. One of the
most important ones is related to the general observation that the group-
symmetry studies related to this particular subject practically do not exits
in the nuclear physics literature with the notable exception of Ref. [4] where
the discussion of some selected properties of the irreducible representations
of the D2 group of the triaxial nuclear rotor can be found. The rotational
properties of the quantum rotor Hamiltonians of the quadrupole-deformed
(D2-symmetry) nuclei are particularly simple — not to say trivial — and
there seemed to be very little interest in the literature in developing the
group-theory aspects of the problem — neither that of the selection rules
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of the related electromagnetic transitions. Indeed, for well deformed nuclei
the main decay sequences are composed of the strong stretched quadrupole
intra-band E2-transitions with only very marginal inter-band transitions on
the level of 10−2 to 10−3 relative intensities.

But for those ‘simple’ quadrupole-deformed nuclei the higher-excited
bands were to our knowledge never analysed from the symmetry point of
view; even the ‘elementary’ tri-axial quadrupole deformation in nuclei has
not been studied, neither properly identified. Let us make this point a little
bit more explicit.

According the additivity represented in (14) to each rotational band there
exists a contribution from the intrinsic (e.g. mean-field) Hamiltonian.

Ibh= 0 Spin

E intr.

E
xc

it
at

io
n 

E
ne

rg
y

I  = 1
bh

I  = 2
bh

H = H     + H
rot intr

Fig. 3. A schematic representation of the energy-spin sequences based on the solu-

tions of the nuclear rotor-plus-mean-field Hamiltonian of Eq. (14).

This brings us to the energy shifts associated with each band, intrinsic band-
head energies, as illustrated schematically in Fig. 3. These energy shifts will
play an essential role in the interpretation of the experimental results —
yet for our purposes they are a disturbing factor and will be ignored. The
illustrations presented below contain only the pure rotor Hamiltonian eigen-
energies.

The first of the two illustrations of the quantum rotor properties presents
the solutions to the triaxial rotor Hamiltonian with the rotor parameters cor-
responding to the quadrupole deformation β2 = 0.25 and γ = 30◦ of a nu-
cleus with A ∼ 80 mass range. There are four families of solutions marked
with different colours corresponding to four one-dimensional irreducible rep-
resentations of the D2 group. The fact that they are one-dimensional implies
that strictly speaking none of the energies is degenerate with any other. Yet,
the solutions appear nearly degenerate on a few eV level for many energies!
A remarkable difference of the energy pattern is visible in the transitional
region of the energies in the middle of the diagram, Fig. 4. Below this transi-
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tional region these are the states belonging to the irreducible representations
A2 and B3 on the one hand and A1 and B4 on the other hand that are very
close in energy (degenerate in the scale of the figure). Above this transitional
region the partnership relations change and B3 and B4 on the one hand and
A1 and A2 on the other hand are nearly degenerate. The transitional re-
gion itself presents a dramatic change in the rotational properties. These
can be seen e.g. by analysing the 3D distributions of the spin-orientation
probabilities (not shown here cf. forthcoming publication) — neither there
were any attempts undertaken to examine the corresponding energy regime
in experiments.

Fig. 4. The energy-spin sequences from the solutions of the nuclear rotor-plus-

mean-field Hamiltonian of Eq. (14); the intrinsic energies Eintr of Fig. 3 are set

equal to zero. The yrast line energies are subtracted for convenience.

Fig. 5. Similar to the above but for the tetrahedral-symmetric rotor.
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Fig. 5 illustrates the results for the quantum rotor with tetrahedral sym-
metry. The presence of very different energy pattern deserves noticing. In
particular a three-dimensional irreducible representation gives rise to the
exact three-fold degeneracy in the rotor spectra. The energy spectrum of
the tetrahedral rotor presents in addition various types of the so-called en-
ergy staggering; here we wish to mention only the visible from the figure
‘oscillation pattern’: three-fold degenerate energies above and below the
neighbouring one-dimensional irreducible representation partner.

5. Perspectives

We believe that the energy staggering pattern presented shortly above
needs further exploration from the experimental point of view. After sub-
tracting the average trend the stagerring oscillations amount to a few keV
— the regime that is accessible within the present day multi-detection sys-
tem techniques. Moreover, the electromagnetic transition selection rules
have been already calculated by us (cf. a forthcoming publication) leading
to a clear-cut selection patterns that are very difficult to confuse with the
competing decay schemes coming from simpler (i.e. not involving high-rank
symmetries) types of nuclear rotation.

The present research has been partially supported by the exchange pro-
gramme between the Institut National de Physique Nucléaire et de Physique
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