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For nuclei in the range of atomic numbers from Z = 71 to Z = 120
we present a survey of experimental and theoretical deviations of ground
state and fission saddle point masses from their respective macroscopic ap-
proximations. The mass deviations (related to shell effects) are an order of
magnitude smaller for saddles than for ground states. This can be under-
stood on the basis of the “topographic theorem”.

PACS numbers: 21.10.Dr, 24.75.+i

1. Introduction

Measured nuclear ground state masses show large deviations from a
smooth macroscopic (Liquid Drop type) approximation. The deviations,
due to nuclear shell structure, reach as much as about −13MeV for doubly
magic nuclei, such as 208Pb and 132Sn. By contrast, measured masses of nu-
clei in their fission saddle-point configurations are much smoother functions
of N and Z, the neutron and atomic numbers. (A measured saddle mass is
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the sum of the measured ground state mass and the measured fission bar-
rier.) There are available today some 120 measured saddle masses, deduced
from the 120 fission barriers listed in [1]. Fig. 1 shows both the ground-state
and saddle-point deviations for 120 nuclei in the range Z = 71 to Z = 100.
The plot is against the neutron number N with lines connecting isotopes.
Later I will also discuss some 300 preliminary theoretical estimates of saddle
masses for Z = 106 to Z = 120. They are due to the Warsaw group of
Adam Sobiczewski and his collaborators [2–4]. We are grateful to them for
permission to display in this talk those preliminary results, some of which
are not published.

Fig. 1. The black circles represent deviations of measured ground state masses
from masses of the spherical configuration, Mmacro(sphere), calculated using the
Thomas–Fermi theory [6,7]. Isotopes are connected by lines and the labels help to
identify the atomic numbers. The red open circles represent deviations of measured
saddle masses from calculated saddle masses Mmacro(saddle), which were obtained
by adding to Mmacro(sphere) Thomas–Fermi fission barriers calculated according
to [8].

Why am I focusing this talk on nuclear saddle-point masses? These
masses control the relative probability for an excited compound nucleus to
fission, and a nucleus that fissions gives up any chance of cooling down by
neutron and gamma ray emission to form a residual nucleus in its ground
state. Avoiding fission in a compound nucleus deexcitation cascade and thus
forming new heavy elements and isotopes is an important way of improving
our understanding of nuclear structure and nuclear reactions. A difference
of 1 MeV in the saddle point mass can make the difference between success
and failure in experiments aimed at making new heavy nuclei.
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I will remind you presently of the standard way of estimating the relative
probability (usually written as the ratio of relative decay widths Γn/Γf) for
a nucleus to emit a neutron rather than fission, and of the crucial role of
the saddle-point mass in this ratio. But, even without any theory, Fig. 1
teaches us a useful lesson. Thus, to estimate a saddle-point mass to within
about 1 or 2 MeV is much easier than to estimate the ground-state mass.
You simply use a (good) macroscopic theory and forget about shell effects!
(At least that would be the case in the range Z = 71 to Z = 100.)

If you need an accuracy better than 1 MeV — and, unfortunately, this
is often the case — then you have to estimate the relatively small residual
shell effects at the saddle point. In this talk I will describe our attempts to
make progress with this problem.

2. About Γn/Γf

The canonical “Transition state theory” of chemical reactions was devel-
oped in the thirties and adapted by Bohr and Wheeler in 1939 to nuclear
fission, in particular to estimating the relative probability of an excited nu-
cleus decaying in two distinct ways, by overcoming two distinct saddle points
in deformation space, for example those associated with fission and neutron
emission. It gives for the relative probability of emitting a neutron rather
than fissioning the elementary relation

Γn

Γf

=
Nn

Nf

, (1)

where Nn and Nf are the numbers of levels (decay “channels”) available to
the neutron and fission saddle point configurations (the “transition states”)
in the energy (or mass) slots between the total mass of the excited nucleus
and the masses of the respective saddles. (The mass of the excited nucleus
is equal to the sum of the masses of the reacting partners plus the mass
equivalent of the center of mass collision energy in the reaction.) Note that,
as discussed with reference to Fig. 9 in [5], the above energy slot in the case
of fission does not require a knowledge of the fission barrier height. Only
the saddle point mass itself, say Mf , is needed. This is why in the present
talk I am focusing on how to estimate this mass.

3. Nuclear saddle point masses

Coming back to Fig. 1 the solid and open circles are, as I mentioned,
the deviations of measured masses from smooth reference mass surfaces
Mmacro(sphere) and Mmacro(saddle), respectively. To be precise, Mmacro

(sphere) is the mass of a spherical nucleus calculated using the macroscopic,
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semi-classical, self-consistent Thomas–Fermi theory (with empirical even–
odd corrections included) as described in [6, 7]. It is a mass surface such
that, after adding to it shell effect corrections determined (except for very
light nuclei) by Möller and Nix using the Strutinsky method, measured
ground-state masses for N , Z ≥ 8 are reproduced to better than 1 MeV
on the average. Mmacro(saddle) is the saddle-point mass obtained by adding
to Mmacro(sphere) the fission barriers calculated using the above Thomas–
Fermi theory [8]. (Thus Mmacro(saddle) has the same even–odd correction
in it as Mmacro(sphere).)

It is also instructive to display the measured saddle point masses with
reference to the masses Mmacro(sphere) rather than Mmacro(saddle). The
upper set of points in Fig. 2 shows the result. These points may now be
considered as representing the heights of fission barriers that would have to
be added to Mmacro(sphere) in order to reproduce the experimental saddle
point masses. They can be compared with the curve in Fig. 2, which is the
fission barrier calculated using the Thomas–Fermi theory [8]. The differences
between the points and the curve, shown as triangles, are identical with the
open circles in Fig. 1, except that they are displayed as functions of the

Fig. 2. The upper set of points represents measured saddle masses minus
Mmacro(sphere) (see caption to Fig. 1). The curve is the calculated Thomas–Fermi
fission barrier, equal to Mmacro(saddle)−Mmacro(sphere). The triangles display the
deviations of the upper points from the curve. They are identical to the red open
circles in Fig. 1. The plot is against the Thomas–Fermi fissility X(TF), defined as
Z2/A(1 − kI2), where k = 1.9 + (Z − 80)/75 and I = (N − Z)/A.
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fissility X(TF) rather than of the neutron number N . [The fissility X(TF)
in Fig. 2 is equal to Z2/A(1 − kI2), where k = 1.9 + (Z − 80)/75 and
I = (N −Z)/A [8]. This X(TF) is a scaling factor (analogous to the scaling
factor Z2/A in the simple Liquid Drop model) which was found to reduce,
to a good approximation, the two-variable Thomas–Fermi barriers B(N,Z)
to a one-variable function B(X).]

Figs. 1 and 2 show that the Thomas–Fermi theory reproduces the mea-
surements to within about 1 or 2 MeV. The deviations scatter around
−1 MeV for N < 136 (i.e., X(TF) less than about 40) and then increase
systematically to about +1 MeV for N > 136.

With one reservation, the black circles in Fig. 1 may be regarded as ex-
perimentally determined ground state shell effects for the nuclei in question,
and the red open circles as the shell effects in the corresponding saddle point
configurations, the focus of our attention. The reservation is that, although
the points in Figs. 1 and 2 originated in purely experimental ground state
and saddle masses, they are displayed as differences between these masses
and reference mass surfaces Mmacro(sphere) and Mmacro(saddle) that do de-
pend on theory. This reservation notwithstanding, the striking feature of
Fig. 1 is how much smoother the measured saddle point masses are com-
pared to the ground state masses. We believe this is due, in large measure,
to the following “topographic theorem”.

4. The topographic theorem

The topographic theorem (see Appendix C in [6]) explains why nuclear
saddle point masses are so much smoother than ground state masses. The
theorem relies for its validity on the relatively short range of shell effect os-
cillations that are superposed on the macroscopic deformation energy land-
scape. On general grounds (see Section 4 in [9] as well as [10]) the range of
shell oscillations is of the order of magnitude of the wavelength of the fastest
particle in the nucleus, the Fermi wavelength λ−F. This is a constant, and its
ratio to the range of characteristic macroscopic deformations is λ−F/(nuclear
radius), i.e., ∼ A−1/3. This is formally a small quantity.

The physical content of the topographic theorem can be appreciated by
imagining a large sheet of egg packaging material, or a foam-rubber sheet
consisting of short range bumps and dimples (representing shell effects),
deformed into a gently curving overall saddle shape (or ridge). In trying
to cross this dimpled saddle from one low region to the other in the most
economical manner, it clearly does not pay to go over a bump in the saddle
region. But it also does one no good to go into a hollow there, since one then
needs to come out of it again. So in the end the optimum path will avoid
bumps and will ignore hollows. Hence, the mass of the saddle point will be
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close to what it would have been in the absence of the shell oscillations, i.e.,
in the macroscopic approximation. The striking thing about this conclusion
is that it is true even though there are appreciable shell effects in the im-
mediate neighborhood of the saddle point. This topographical expectation
finds experimental confirmation in the saddle masses displayed as barrier
heights (the open circles) in Fig. 2 and in the saddle mass deviations (the
triangles), which are smoother by an order of magnitude than the ground
state deviations (the solid circles in Fig. 1). Note that the remaining devi-
ations from smoothness in the saddle masses are significantly smaller than
typical calculated shell effects in the saddle region.

The statement that the topographic theorem predicts saddle masses close
to saddle masses calculated macroscopically needs to be qualified for very
heavy nuclei, for which the macroscopic fission barrier has vanished and the
macroscopic deformation energy is a monotonically decreasing function of
the fission degree of freedom. In those cases the formal continuation with
increasing fissility of macroscopic saddles actually leads to oblate saddles,
quite irrelevant to actual saddle points that are due entirely to shell effect
dimples in (generally) prolate or spherical configurations. The topographic
theorem (based on the avoidance of bumps in the deformation energy land-
scape) should then be understood to imply that the saddle mass associated
with climbing out of the dimple may be estimated as the macroscopic mass
a little beyond the location of the dimple, where the dimple would be turn-
ing into a bump. For an attempt to implement this idea see Appendix B.2
in [5]. The above extension of the topographic theorem becomes relevant in
the case of the theoretical saddle masses for Z ≥ 106, to be considered next.

5. Theoretical saddle masses of nuclei with Z ≥ 106

Fig. 3 shows the deviations of calculated ground state and saddle masses,
deduced from [2–4] (and adjusted by us to remove even–odd staggering)
from a smooth mass surface Mmacro(sphere), analogous to (but, of course,
not identical with) the Mmacro(sphere) in Section 3. The plot is similar to
Fig. 1, but the decomposition of the calculated masses into a macroscopic
part and a “shell correction” is not quite unambiguous. This is because the
calculated mass Mcalc is given as the sum of the above Mmacro(sphere) and a
microscopic part Mmicro, which latter incorporates both the shell correction
and the pairing energy (the even–odd staggering) – these are not listed
separately.

The empirical adjustment for the even–odd staggering that we applied
to the calculated masses may be illustrated with reference to Fig. 4. The full
diamonds show, for Z = 110, the values of Mmicro. By subtracting Mmicro

from Mcalc one obtains an essentially smooth mass surface Mmacro(sphere),
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Fig. 3. The lower set of points represents the difference between calculated ground
state masses Mcalc and a smooth macroscopic mass surface Mmacro(sphere). (See
text for details.) The upper set of points represents calculated saddle masses minus
Mmacro(sphere). The saddle masses are preliminary, since they were calculated
under the assumption of axial and reflection symmetry. For both the upper and
lower points even–odd staggering was removed, as described in the text. The
calculations are those of the Warsaw group [2–4]. Labels refer to atomic numbers
and isotopes of an element are connected by lines.

which has neither shell nor even–odd irregularities in it. The open squares
in Fig. 4 show the calculated saddle masses minus the above Mmacro(sphere).
If such plots of ground state and saddle mass deviations were presented for
all Z values in a single figure like Fig. 3, the result would be essentially
indecipherable because of the even–odd stagger. We found that one way out
was to shift down the ground state odd-A points in Fig. 4 by 9 MeV/

√
A

and the saddle odd-A points by 12 MeV/
√

A before entering those values
in Fig. 3. This made the odd-A and even–even points follow a single trend,
which made it possible to construct an intelligible Fig. 3. Note, however,
that the absolute values of the resulting mass deviations in Fig. 3 would have
been different if the even–even points had been raised to match the odd-A
points. A third way of removing the stagger would be to raise the even–even
and odd-A points to match the trend of presumed odd–odd points, expected
to be higher than the odd-A points by another 9 MeV/

√
A for ground states

and by 12 MeV/
√

A for saddles. This ambiguity in producing a plot like
Fig. 3, which was supposed to display shell corrections, is the result of the
calculations in question providing only the sum of shell and pairing effects.
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Fig. 4. The solid diamonds represent, for Z = 110, the difference between cal-
culated ground state masses and calculated macroscopic masses Mmacro(sphere).
The open squares represent the difference between the calculated saddle masses
and Mmacro(sphere). An even–odd staggering is visible. In constructing Fig. 3 this
staggering was removed by lowering the odd-A ground state masses by 9 MeV/

√
A

and the odd-A saddle masses by 12 MeV/
√

A.

Comparing the upper and lower parts of Fig. 3 one sees again the rela-
tive smoothness of the saddle masses compared to the ground state masses.
Several words of caution are, however necessary. First, as stressed in [3], the
theoretical saddle masses represent preliminary values, obtained with saddle
shapes restricted to axial and reflection symmetry. In the example of the
nucleus with Z = 116, N = 178, inclusion of these extra degrees of freedom
decreased the saddle mass by 1 MeV [3]. Similar decreases may be expected
in other cases.

Second, unlike in Fig. 1, the saddle masses in Fig. 3 are displayed with ref-
erence to Mmacro(sphere) rather than Mmacro(saddle), which was not avail-
able. For very heavy nuclei the difference between these quantities (the
macroscopic fission barrier) tends to zero and may be disregarded. But for
progressively lighter nuclei, where the macroscopic fission barriers become
appreciable, the above deviations would begin to display mostly the expected
increasing macroscopic fission barriers, rather than saddle point shell effects.
(Compare Fig. 2.) Unfortunately, we are not in a position to allow for this
effect in our plots because the relevant macroscopic fission barriers have not
been calculated.
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Related to this point is the feature discussed at the end of Section 4. For
the very heavy nuclei in Fig. 3 the macroscopic barriers have vanished and
the relevant saddle masses are the masses associated with climbing out of a
shell effect dimple along a prolate fission path. When the nucleus in ques-
tion is shell-stabilized in a deformed ground state, the saddle will, in general,
be located at a sizeable deformation, at which the macroscopic energy can
be appreciably below the macroscopic energy of the sphere. The extended
macroscopic theorem would then lead one to expect the saddle mass devia-
tions to become increasingly negative with increasing nuclear fissility, as is
indeed observed in Fig. 3. On the other hand, for the heaviest nuclei, be-
yond about Z = 114, the ground states become eventually stabilized at the
spherical shape. The saddle configuration will now be much less deformed,
and the macroscopic energy at that deformation will be less negative with
respect to the macroscopic energy of the sphere. This would lead one to
expect an actual reversal in the trend of the saddle mass deviations with
Z increasing beyond about 114, again in agreement with what is observed
in Fig. 3. It remains to be seen whether these qualitative expectations are
borne out by a quantitative analysis.

6. Summary

It is instructive to combine Figs. 1 and 3 in a single plot, Fig. 5. This plot
summarizes information, both experimental and theoretical, concerning the
trends in ground state and saddle masses in the range of atomic numbers
Z = 71–120 and neutron numbers N = 102–184. As mentioned in Sec-
tion 5, the theoretical mass deviations should not be taken at face value as
representations of shell effects, since some modifications are expected and,
in addition, there is present an ambiguity concerning the separation of shell
and pairing corrections. The overall message of this compilation is, never-
theless, the relative smoothness of saddle point masses compared to ground
state masses. The challenge is to make less ambiguous the remaining ir-
regularities and to provide, if possible, an understanding of their overall
features.

There is one practical lesson that we would like to stress. The large num-
ber of current numerical studies of masses of heavy and superheavy nuclei,
usually list calculated ground state masses and fission barriers (sometimes
only one or the other), but do not list or display the saddle point masses
themselves. Now ground state masses and fission barriers, taken separately,
are “jagged” functions of N and Z, subject to large shell effect irregularities.
But their sums, the saddle masses, are much smoother objects, which are
easier to parameterize and extrapolate. Bearing in mind that it is the saddle
mass for fission, Mf , and not the fission barrier that is needed in estimating
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Fig. 5. This figure combines in one plot Figs. 1 and 3. The circle and square labeled
116 illustrate the lowering by 1 MeV of the saddle mass of the nucleus Z = 116,
N = 178, resulting from including in the calculations deviations from axial and
reflection symmetry. Note that, as explained in the text, there is some ambiguity
in interpreting the calculated mass deviations as due to shell effects.

the relative probability for a nucleus to survive fission, it would be well if
Mf , a basic datum of fission physics, were accorded the same prominence in
the presentation of calculations as the nuclear ground state mass.

An additional plea to those who study nuclear masses using the macro-
scopic–microscopic approach: please provide the macroscopic saddle point
masses as well as the saddle masses with shell effects included. Compared
to the latter, macroscopic saddle masses are almost trivial to determine, but
they are essential for isolating and understanding the nature of the residual
shell effects on saddle masses.
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