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Potential energy of a heavy nucleus (250Cf) is analysed in a 5-dimensional
deformation space. This is the most general space including quadrupole and
hexadecapole deformations, when the reflexion symmetry of a nucleus with
respect to all three planes of the intrinsic coordinate system is assumed.
Main attention is given to the influence of non-axial hexadecapole shapes
on the height of the fission barrier of the analysed nucleus. It is found
that this influence is small (about 0.1 MeV) for the considered nucleus,
in contrast to the influence of non-axial quadrupole deformation, which is
large (about 1.8 MeV).

PACS numbers: 25.85.–w, 27.90.+b

1. Introduction

This paper belongs to a series of studies of the potential energy of heav-
iest nuclei and, in particular, of the static fission-barrier heights, Bst

f , done
recently in our group (e.g., [1–7]). They mainly aim in learning the role of
various kinds of deformation of a nucleus in determination of these heights.
Generally, studies of fission barriers are recently quite intensive (e.g., [8–13]).

In the present paper, we concentrate on the role of hexadecapole defor-
mations, in particular on their non-axial components. It has been shown
(e.g., [6]) that the quadrupole non-axial deformation is important for the
heights. It may decrease them by up to about 2 MeV. It is interesting then
to learn how much non-axial hexadecapole deformations may influence these
heights.
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2. Method of the calculations

Macroscopic–microscopic approach is used to describe the potential en-
ergy of a nucleus. The Yukawa-plus-exponential model is taken for the
macroscopic part of the energy and the Strutinski shell correction, based on
the Woods–Saxon single-particle potential, is used for its microscopic part.
Details of the approach are specified in [14]. Especially important in the
calculations is the deformation space admitted in them.

3. Deformation space

A 5-dimensional deformation space is used. Besides 2-dimensional quad-
rupole space, it includes a 3-dimensional hexadecapole space. The latter is
the general hexadecapole space, if one assumes the reflexion symmetry of
a nucleus with respect to all three planes of the intrinsic coordinate system
[15]. The space is specified by the following expression for the nuclear radius
R(ϑ,ϕ) (in the intrinsic frame of reference) in terms of spherical harmonics
[15]
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{

1 + β2

[

cos γ2Y20 + sin γ2Y
(+)
22

]

+
1√
12

β4

[

(
√

7 cos δ4+
√

5 sin δ4 cos γ4)Y40−
√

12 sin δ4 sin γ4Y
(+)
42

+ (
√

5 cos δ4 −
√

7 sin δ4 cos γ4)Y
(+)
44

]}

, (1)

where γ2 is the Bohr quadrupole non-axiality parameter and the depen-
dence of R0 on the deformation parameters is determined by the volume-

conservation condition. The functions Y
(+)
λµ are defined as:

Y
(+)
λµ =

1√
2

[Yλµ + (−1)µYλ−µ] , for µ 6= 0 . (2)

The regions of variation of the deformation parameters are

β2 ≥ 0 , 0◦ ≤ γ2 ≤ 60◦ , (3)

β4 ≥ 0 , 0◦ ≤ δ4 ≤ 180◦ , 0◦ ≤ γ4 ≤ 60◦ . (4)

4. Results

Figure 1 shows a contour map of the potential energy of the nucleus
250Cf projected on the plane (β2, γ2). As usually in the macro–micro cal-
culations, the energy is normalised in such a way that its macroscopic part
is equal to zero at the spherical shape of a nucleus. Minimum of the energy,
Emin = −3.61MeV, is obtained at the quadrupole deformation: β0

2 = 0.24,
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γ0
2 = 0, and the saddle-point energy, Es = 1.60MeV, at βs

2 = 0.49, γs
2 = 16◦.

Strong dependence of the energy on deformation, seen in the figure, is mainly
due to the main (quadrupole) component of the deformation.
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Fig. 1. Contour map of the total energy, E(β2, γ2; β
min
4 , δmin

4 , γmin
4 ), of the nucleus

250Cf, projected on the plane (β2, γ2). Numbers at the contour lines give the values
of the energy in MeV. Positions of the equilibrium (circle) and saddle (cross) points
are indicated. Values of the energy at these points are given in parentheses.

Influence of the hexadecapole component of the deformation on the en-
ergy is illustrated in Fig. 2. One can see that this influence is relatively
small for the considered nucleus. This component decreases the energy by
about 0.5MeV at the equilibrium point and by about 0.4MeV at the sad-
dle point. As a result, it changes (increases) the barrier height Bst

f only by
about 0.1MeV, in contrast to the quadrupole non-axial deformation, which
lowers Bst

f by about 1.8MeV [16].
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Fig. 2. Same as in Fig. 1, but for the difference: E(β2, γ2; β
min

4
, δmin

4
, γmin

4
) −

E(β2, γ2; β4 = 0), i.e. for the total effect of the hexadecapole deformation on
the energy of 250Cf.
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Effect of the non-axial hexadecapole deformations on the energy is shown
in Fig. 3. One can see that this effect is rather small, smaller than 0.7MeV
(in its absolute value) in the whole considered region of deformations. In par-
ticular, these deformations decrease the height Bst

f by only about 0.15MeV.

Here, δ4 = δ0
4 (tgδ0

4 =
√

5/7) and γ4=0 correspond to hexadecapole shapes
which are axially symmetric [15].
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Fig. 3. Same as in Fig. 1, but for the difference: E(β2, γ2; β
min
4 , δmin

4 , γmin
4 ) −

E(β2, γ2; β
min
4 , δ0

4 , γ
0
4), i.e. for the effect on energy of the hexadecapole non-axial

deformations of 250Cf described by the parameters δ4 and γ4.

Finally, Fig. 4 shows the effect of the (non-axial) hexadecapole deforma-
tion γ4 on the energy. One can see that this effect is very small. In particular,
it does not change the energy in the ground state and in the saddle point,
and, as a consequence, leaves the barrier height Bst

f unchanged.
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Fig. 4. Same as in Fig. 1, but for the difference: E(β2, γ2; β
min

4
, δmin

4
, γmin

4
) −

E(β2, γ2; β
min

4
, δmin

4
, γ4 = 0), i.e. for the effect on energy of the hexadecapole

non-axial deformation of 250Cf described by the parameter γ4.
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In conclusion, one can say that the hexadecapole non-axial deformations
have only a small influence on the energy of the considered nucleus 250Cf.
This especially concerns the deformation γ4. If the latter conclusion, con-
cerning γ4, is general (which should be checked), the calculations of the
energy may be simplified by omission of γ4, without an appreciable decrease
in the accuracy of the results.
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