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The phase diagram for the configuration mixed Interacting Boson Model
is investigated for the special case of U(5)–O(6) mixing using the methods
provided by Catastrophe Theory. It will be shown that this phase dia-
gram exhibits properties not present when only a single configuration is
considered.
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1. Introduction

In several regions of the nuclear chart, a systematic lowering of collective
intruder bands is observed when approaching proton or neutron midshell.
Macroscopically, this can be understood as the coexistence of different poten-
tial energy minima within a small energy interval. From microscopical point
of view, this phenomenon can be explained invoking particle-hole excita-
tions across the closed shell. The combined effect of monopole, pairing, and
quadrupole interaction may cause the intrusion of the bands built on these
p–h excitations to very low energies [1], hence leading to mixing between the
different bands, i.e. configuration mixing. One of the most spectacular ex-
amples is the Pb-region where both microscopic [2,3] and macroscopic [4,5]
approaches succesfully describe the dramatic lowering of collective intruder
bands towards neutron midshell.
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Configuration mixing can easily be incorporated in the Interacting Boson
Model (IBM) [6], an algebraic model that approximates particle pairs cou-
pled to 0+ and 2+ as s and d bosons. A nice feature of this model is the fact
that information on nuclear collective motion can be extracted by means of
the coherent state formalism. The main goal of this paper is a general study
of the concept of configuration mixing and its relation to shape coexistence
as configuration mixing will not always give rise to macroscopical shape co-
existence. Depending on the IBM-parameters, the strength of the mixing,
and the unperturbed excitation energy of the intruder configurations, the
potential energy surface calculated with the coherent state formalism [7–9]
can exhibit a single minimum or coexisting minima. Using Catastrophe The-
ory [10], we will construct phase-diagrams for the special case of U(5)–O(6)
mixing and mark out the regions with different behaviour of the potential
energy surface.

2. Theoretical framework

2.1. The potential energy surface for U(5)–O(6) mixing

The potential energy surface (PES) for the configuration mixed system
E− is obtained as the lowest eigenvalue of the potential energy matrix [11]
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with Ω =
√

(N + 1)(N + 2)α the mixing strength [11], N the total number
of bosons, ǫ and κ IBM-parameters [6], β the axial quadrupole deformation,
and ∆ the initial excitation energy of the intruder band corrected for pairing
and change in monopole interaction. In the absence of mixing, the U(5)-limit
corresponds to a PES with a spherical minimum while the O(6)-limit gives
rise to a γ-independent deformed minimum in the PES, where γ denotes the
nonaxial quadrupole deformation.

2.2. Criticality conditions

If one examines the properties of a system, phase transitions might oc-
cur when the order parameters of the system under study are varied and
pass through a critical value. In thermodynamics, temperature is the order
parameter while for the PES describing U(5)–O(6) mixing, the parameters
∆, ǫ,Ω,N, κ are the order parameters. Such kind of phase transitions are
referred to as “quantum phase transitions” [10, 12].
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To determine the critical values of the order parameters of the system,
one needs to determine the locus of points for which the conditions

∂E−

∂β
= 0 ,

∂2E−

∂β2
= 0 , (2)

are fulfilled.
In regions where the PES has several minima, it is from physics point

of view important to know which minimum is the global one. Maxwell
points [10] mark out where the global minimum jumps from one local mini-
mum to another.

3. Results and discussion

An analytical solution for the criticality conditions can be found by ex-
panding the PES for configuration mixing around β = 0 [12]. The Taylor
expansion around this point is given by

E− = −ζ −
√

ζ2 + Ω′2 +
1

√

ζ2 + Ω′2

[

ǫ′N
(

√

ζ2 + Ω′2 − ζ
)

− 4N(N + 2)

×
(

√

ζ2 + Ω′2 + ζ
)

]

β2 + . . . , (3)

where ζ = −∆/|κ|+ 5(N + 2), ǫ′ = ǫ/|κ|, and Ω′ = 2Ω/|κ| were subsituted.
If the coefficient in β2 vanishes identically, the criticality conditions are
fulfilled. This leads to the following relation between ζ, Ω′, and ǫ′

ǫ′ = −4(N + 2)
ζ +

√

ζ2 + Ω′2

ζ −
√

ζ2 + Ω′2
. (4)

For β 6= 0, the criticality conditions have to be solved numerically. The
resulting phase diagrams are shown in Fig. 1 for different excitation en-
ergies of the intruder states. For small ∆/|κ|, we can clearly distinguish
three different regions, one with a spherical minimum, one with a deformed
minimum and a large region with a coexisting deformed and spherical mini-
mum. When ∆/|κ| increases, the physical region with a deformed minimum
becomes smaller and when the slope of the line of Maxwell points changes
sign, a phase with spherical minima starts growing at the origin of the phase
diagram. Eventually, this small region of sphericity merges with the larger
one and the area of shape coexistence is splitted. For high ∆/|κ|, coexis-
tence for small values of ǫ/|κ| disappears and the remaining region of shape
coexistence shifts to high values of ǫ/|κ|.
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Fig. 1. Phase diagram in case of U(5)–O(6) mixing for several values of ∆/|κ| and

for N=10. The locus of points which are determined analytically are shown with

a full line. Numerical solutions of the criticality conditions are displayed with a

dashed line, while the Maxwell points are indicated with a dotted line. The inset

figures illustrate the arbitrary shape of the potential energy surface as a function

of β. For small regions in the phase diagram, the arrows indicate which arbitrary

shape is connected with those phases.

4. Conclusions

We have determined the phase-diagram for U(5)–O(6) mixing and dis-
cussed the evolution with varying excitation energies of the intruder states.
Whereas the pure U(5) and O(6) limit can be associated with a spherical
and a deformed minimum, an additional phase with shape coexistence can
be found in the case of mixing. Analysis of mixing between the other IBM
symmetry limits and applications in the Pt-Pb-Hg region are in progress.
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