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Biological and synthetic nanochannels exhibit two essential biophysical
properties: selective ion conduction and the ability to gate open in response
to appropriate stimulus. Both these properties are related to several untyp-
ical modes of behaviour of the diffusional and conduction currents, absent
in the normal (electro-)diffusion. We present our recent results concern-
ing some of such anomalous phenomena. Selectivity is related to the fact
that electrical and diffusive currents exhibit several asymmetries — the
asymmetric channels rectify the electric currents: the relation I versus U
is asymmetric (this is related to the pumping effect observed in synthetic
nanochannels), moreover, for U = 0 the magnitude of purely diffusional
currents depends on the direction of the concentration gradient. These
phenomena can be described by a model based on the continuous descrip-
tion starting from the Smoluchowski equation. The flicker noise in the
power spectra of ionic currents is known to be present both in very narrow
biological and (some) synthetic channels. We simulated the motion of K+

ions of the single-file type through a model channel with the gate which
opens and closes under influence of both random noise, and interactions
with ions present inside the channel. We found that there is a range of
the varied parameters, in which the power spectrum has the characteris-
tics of th e flicker noise. Critical for the appearance of the flicker noise
are the condition of single-file motion of ions through the channel and the
opening/closing of the gate.
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1. Introduction

Transport of material through biological nanochannels is the basis of
almost all life processes [1]. On the other hand, nanochannels transport plays
an important role in biotechnology, where, for example, the nanochannels
function as bio-sensors suitable for single-molecule detection [2], as well as
they act as nano-pumps able to transport ions [3] or water [4] against their
concentration gradients.

When the dimensions of objects approach the nanometer scale we ob-
serve new properties occurring due to the restricted geometry. Indeed, pro-
cesses going in nanometer sized biological ion channels embedded in the
cell membrane exhibit several untypical modes of behaviour not present in
macro-scales as rectification of currents, ion selectivity, and flicker noise
being present in passive channels, and pumping of material against concen-
tration gradient, being the main function of active channels (ATPases).

Biologists tended to explain these phenomena by “specific properties” of
proteins forming biological channels. However, the synthetic nanochannels
which do not contain any proteins, exhibit the same peculiarities as biologi-
cal passive channels including selectivity, rectification and flicker noise [5,6];
moreover, the same synthetic channels seem to be even more universal than
passive biological channels, being are able to pump ions against their con-
centration gradients [3], in which they mimic the action of active biological
active channels.

The known data about these channels show that most of them is asym-
metric and charged. In some, especially biological ones, the concentration
gradients and/or electric charge gradients, and the motion of channel walls’
constituents are observed [6,7]. The single-file motion [8], and the values of
parameters which are different from those in the bulk (macroscopic) ones [9]
are expected in very narrow channels.

In this paper we present evidence that all the above-mentioned properties
of nanotransport result from the confined geometry and asymmetries of very
narrow channels. Most of the analysis will be devoted to ionic transport.

2. Continuous description — conductance

The description of the transport through nanosized pores by continuous
models based on the Smoluchowski equation are much simpler for prac-
tical use than the more detailed microscopic ones. Although the validity
of such description was subject of vivid controversy [10–15], we found re-
cently [16–21] that the Smoluchowski equation is sufficient for at least semi-
quantitative description of these rather complicated phenomena occurring
on a nanoscale when the channel’s diameter is not too narrow and does not
force the particles (ions) to move in a single-file arrangement. Therefore, the
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model presented below will be useful mainly for the description of synthetic
nanochannels in which the diameter in the narrowest part is of the order of
several molecular diameters, and its applicability to biochannels is not clear.

Main physical quantities determining the model are the geometry and the
electric potential inside the channel, whereas the measured quantity is the
electric current through the channel. Most of the experimental [17, 18, 20]
data on which the model is based were obtained in long thin channels of
roughly conical geometry (cf. Fig. 1). The electric potential energy of an
ion inside the channel is φi = eZiV , where Zi is ion’s valence, V — the
electric potential, e — the elementary charge. V is measured in Volts.

Fig. 1. Schematic sketch of the nanochannel geometry. Not in proportions.

The whole electric potential is the sum of external and internal contri-
butions:

V (x) ≈ Vint(x) + Vext(x) . (1)

The internal field is generated by the charges located on the channel
walls, of charge density esintρ(z), dependent in general on the location along
the channel axis. We assume that the internal potential depends only on z
and r (distance perpendicular to the axis) and does not depend on the angle
θ (cf. Fig. 1 for explanation of the notation):

Vint(z, r) =
esint

4πε

L
∫

0

dz′ ρ(z′)h(z′)

π
∫

−π

dθ′ R−1(z, z′, r, θ′)e−λR(z,z′,r,θ′) , (2)

where sint is the sign of the walls’ charge, ε denotes the dielectric constant
(for water solutions we assume ε = 80.1ε0, ε0 being the vacuum permit-
tivity), λ = 1/lD is the inverse Debye (screening) length, factor h(z′)

∫ π

−π
dθ′

gives the number of charges per unit length on the pore’s circumference,

R(z, z′, r, θ′)= |x−x
′|=

√

[

r−h(z′) cos θ′
]2

+
[

h(z′) sin θ′
]2

+(z−z′)2 , (3)
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is the distance between points x and x’, and where we put θ = 0, due to
the assumed axial symmetry of the channel.

The mass current through the inside of the channel (bulk or volume
current) can be calculated from the Smoluchowski equation in the one-
dimensional Fick–Jacob’s projection [22] (cf. [16–19] for more details):

Ji = Di

[

eβiφi(z0) ci(z0) − eβiφi(z) ci(z)

]/

L
∫

z0

dz′ A−1(z′) eβiφi(z
′) . (4)

and the corresponding concentration profile reads:

eβiφi(z) ci(z) = eβiφi(z0) ci(z0) −
Ji

Di

z
∫

z0

dz′ A−1(z′) eeZiβφi,int(z
′) , (5)

where ci(z) and φi(z) = eZiV (z) are the concentration and electric potential
energy of the ion i averaged over the channel’s cross-section A(z) = πh2(z),
and β = 1/kT .

The standard procedure (cf. e.g. [23]) is to calculate Vint, Vint, and Ji

from the assumed zeroth approximation for the concentration gradient c(z, r)
(e.g. bulk value c(z) = c0 +(cL− c0)z/L), next to calculate ci(z, r) from the
above functions: ci(z, r)=ci(z); Vint(z, Ji)=exp[−βeZiVint(z, r)], and so on.

Fig. 2. The shape of the effective electric potential inside the nanochannel resulting

from the uniform charge distribution on the surface of the conical pores of different

sizes. External field is not taken into account. L = 12 µm, constant surface charge

ρ = 1.5e/nm2 and concentrations on both sides 0.1 M. Curve 1: r0 = 1 nm, rL =

1000 nm, curve 2: r0 = 1 nm, rL = 500 nm, curve 3: r0 = 20 nm, rL = 250 nm,

curve 4: r0 = 5 nm, rL = 250 nm, curve 5: r0 = 1 nm, rL = 250 nm. The potential

near pores’ wide aperture is of the order of 10−4 V.
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The typical shapes of the effective potential V (z) and of the concen-
tration profiles are shown in Figs. 2 and 3. The important feature is the
asymmetric minimum of the potential near the narrow tip of the conical
pore, which is the main source of the selectivity, rectification, and pumping
by charged nanochannels (cf. below).

Fig. 3. Concentration profiles of cations (K+) and anions (Cl−) inside the conical

nanopore of dimensions r0 = 1.5 nm, rL = 315 nm, L = 12 µm, constant surface

charge ρ = 1.5e/nm2 and concentration gradient: c0 = 0.1, cL = 1.0 M Kcl. Note

the logarithmic scale.

The bulk electric current Ib = e
∑

i tiZiJi, where ti are the so-called
transference numbers of cations (t+) and anions (t−) (for bulk KCl t+ ≈
t− ≈ 0.5) is not the sole contribution to the measured current. As as result
of strong interactions between the charges on the pore walls and the ions in
the solution, there is a surface (called also double or diffuse) layer [23, 24],
formed close to the pore walls. The surface layer contains mainly counterions
to the charges on the pore walls. The counterions move along the applied
field and contribute to I. Both literature [23, 24] and our experimental
data [17, 18] show that this effect is especially strong in very narrow pores,
and at lower concentrations when the double-layer thickness becomes larger.
Therefore,

I = Ib + Is . (6)

Evidence of the surface currents (in the form of the concentration depen-
dence of the conductivity κ(c)) is shown in Fig. 4 for a cylindrical synthetic
nanochannel [17] without any asymmetry which could be responsible for the
observed effect. The data and curves labelled “pH 8” and “pH 2” correspond
to negatively charged and electrically neutral, respectively, channels (cf. [17]
for more details), the curve “bulk” presents the conductivity calculated in
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Fig. 4. Determination of the surface conductance κ versus concentration c of the

solutions of KCl κ in the cylindrical nanochannel, L = 12 µm, r0 = rL = 35 nm.

Circles: experimental data with experimental error shown by vertical bars.

the absence of surface currents. The difference between conductivities of
charged and neutral channels is interpreted as the surface conductivity. Note
the strong nonlinearity of the conductance in the charged pore as function
of concentration at low concentrations of KCl, being the effect of changes
of parameters, mainly ionic mobilities and Debye screening lengths, in the
strongly confined geometries [9].

The ionic selectivity results from the concentration profiles inside asym-
metric nanochannels shown in Fig. 3, the cations are attracted towards, an-
ions, repelled from the narrow opening. The calculated cationic and anionic
diffusional flows J through short narrow nanopore of dimensions compara-
ble to biological channels are shown in Fig. 5. The positive direction of flow
(along concentration gradient and external electric field) is from narrow to
wide opening.

Fig. 5. Asymmetry of ionic nanocurrents: electro-diffusional flows of K+ and Cl−

through short narrow nanochannel of dimensions r0 = 0.5 nm, rL = 1.5 nm, L = 6

nm, constant surface charge ρ = 1.6e/nm2 and concentration gradient c0 = 1.0,

cL = 0.1 M KCl.
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Both the model and electrolytic conductivity measurements show that
asymmetric nanopores rectify partially the current, even in relatively wide
channels. This is illustrated Fig. 6. The preferential direction of cation flow
is from the high towards the low surface charge density and/or from the
narrow towards the wide opening of the pore, i.e. from high towards low
electric fields.

Fig. 6. Rectification of ionic nanocurrents: current-voltage characteristic of a single

conical synthetic pore of dimensions r0 = 12 nm, rL = 710 nm, L = 12 µm, constant

surface charge ρ = 1.5e/nm2 and constant concentration c0 = cL = 0.1 M Kcl.

Circles: experimental data [18], continuous line: fitted model.

When the driving (external) field is oscillating, the rectification effect
results in the pumping of ions against concentration gradient. This type
of pumping, shown in Fig. 7, is observed experimentally in synthetic nano-
pores [3]. Biological pumps (ATPases) work by different principle, using the
energy from the dissociation of ATP, although they are also able to make use
of the energy from the oscillating electric field [25]. Common factor for both

Fig. 7. Pumping of ions against concentration gradient by periodic electric field

through synthetic conical pore of dimensions r0 = 1.5 nm, rL = 315 nm, L =

12 µm, constant surface charge ρ = 1.5e/nm2 and concentration gradient: c0 = 0.1,

cL = 1.0 M KCl. Circles: experimental data [3], continuous line: model with fitted

parameters [3] (cf. also [14]).
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types of nanopumps is that they work by the so-called ratchet principle, i.e.
due to asymmetry of electric potentials [3, 26, 27]. It was shown that the
pumping by ATPases is related to the stochastic resonance [26].

Still other, unknown earlier effect is shown in Fig. 8. When the con-
centration gradient through asymmetric nanopore is reversed, not only the
direction of the (electro-)diffusional flow J is reversed, but also changes its
magnitude [19–21], with the preferential direction (higher |J |) from the wide
towards the narrow opening. Fig. 8 shows also the difference between flows
calculated according to the bulk (dashed lines) and fitted (continuous lines)
values of the model physical parameters. Although the bulk-type version
of the model does not describe the experimental data too well, it still gives
qualitatively correct predictions of the asymmetry effects.

Fig. 8. Asymmetry of the nanodiffusion: ionic currents through synthetic conical

pore of dimensions r0 = 1.5 nm, rL = 315 nm, L = 12 µm, constant surface charge

ρ = 1.5e/nm2 and concentration gradient: c0 = 0.1, cL = 1.0 M KCl. Circles:

experimental data [19, 20], continuous line: model with fitted parameters, dashed

line: model with bulk parameters.

3. Brownian Dynamics — flicker noise

Ion currents through nanochannels exhibit fluctuations of the type of
1/f (flicker) noise when a constant voltage is applied. Moreover, the power
spectra of the currents through biological and synthetic channels are almost
identical (cf. Fig. 9), originate from the channel’s opening–closing processes
and most probably are related to the motion of charged constituents of
the pore walls [6]. These facts are related to the hypothesis put forward
earlier in [7] that this type of noise is produced by “fluctuator” dynamics,
that is, by random switching of the channel between its different conducting
states. Such, well-known, switching of channel-forming proteins between
their conformations is called “gating”.
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Fig. 9. Comparison of experimental power spectra of K+ currents through biological

and synthetic nanochannels (cf. [6] for details).

In very narrow pores of dimensions in the narrow part comparable with
biological channels the ions (or other particles) can move in a single-file
formation only. In such a case the molecular dynamics (MD) simulations
seem to be more reliable than the continuous-type description via (electro-)
diffusional equations, discussed in the preceeding section.

MD simulations of molecular structure of biological or synthetic K+

channels containing ions and water inside and in the immediate vicinity,
etc., requires use of total number of atoms in the simulation system above
4× 104, and time-steps 0.2 fs [28,29]. Therefore, we chose the semi-heuristic
approach, keeping correct equations of motion (in the form of Langevin-
type equations) and correct interactions between ions, but substituting the
random and friction forces for the interactions with water molecules, and
introducing more or less heuristic assumptions about interactions of ions
with the channel walls. For this latter purpose the following known proper-
ties of the ionic transport through narrow channels were used: (i) single-file
motion, (ii) gating — it was shown that in synthetic channel it results from
the motion of so-called “dangling ends”, i.e. of the cleaved charged poly-
mer strands [6], whereas in biological channels several more or less plausible
gating mechanisms were proposed, including conventional mechanical ideas
of swinging door or slider obstructing the pore [1], (iii) asymmetry of the
shape and of internal potential (in synthetic channels Vmin(z) lies at about
5 nm from the narrow tip, cf. Fig. 2), (iv) concentrations outside channel
different in biological cells, the same in synthetic channel measurements [6],
(v) length of biological channels about 10 nm , synthetic channels are much
longer, with the narrow part (tip) a few nm long.
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These features were modelled by: (i) quasi-one-dimensional motion plus
“no jump” condition, (ii) charged gate inside channel, (iii) external charges
pushing cations towards centre of pore, simulating the asymmetric forces
from charged channel’s walls acting on ions (cf. Figs. 2 and 3 above),
(iv) the assumption that cations enter the pore (simulation region) with
probabilities Pin,0, Pin,L (the same or different), (v) simulation region of
length L = 10 nm. Moreover, we used two different types of the description
of the opening and closing of the gate: (i) the Langevin-type equations
of motion for charged dangling ends treated as two-dimensional pendula
interacting with each other and with passing ions [30], and (ii) the heuristic
gate which opens and closes depending whether the force acting on it is
higher or lower than some prescribed value (cf. below, Eq. (9) [31, 32].

Contrary to noiseless Molecular Dynamics, the selection of the time-step
δt cannot be done at will, but it needs to meet some additional conditions
[12,32,33], which result in the requirement that δt to be of the order of m/γ,
m being the ion’s mass, γ — the friction coefficient. In our simulations, for
K+ ions in water, this gives δt ≈ 31 fs.

All the above assumptions lead to the following equations describing our
Brownian Dynamics model:

the Langevin-type equations of motion for the cations moving along
the z-axis of the channel:

miv̇i = −γivi + Ri(zi) + Fi(zi) ,

żi = vi , (7)

where vi is the velocity of i-th ion, zi — the position, mi — the mass, γi

— the friction coefficient, and either analogous equations for dangling
ends’ gate:

I~̇ωk = −γ̃kl
2
k~ωk +~lk × ~Rk +~lk × ~Fgk

, (8)

where mi is the mass of i-th ion, γi — the friction coefficient, ~ωk, Ik

and lk — angular velocity, inertia and length of the k-th dangling end,
or the expression for the total force acting on the heuristic gate:

Ftot,g = Fg + QgRg . (9)

Here Fi, Fg are sums of deterministic forces, Ri, Rk — the random
forces assumed here to be the thermal noise represented by the Gaus-
sian white noise, and Rg — the Wiener process (gate’s Brownian mo-
tion). Friction coefficients are assumed to result from the water vis-
cosity η via the Stokes law.
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The deterministic forces experienced by an i-th cation, k-th dangling
end, and the gate consist of (i) the applied external force (U — the electrical
potential difference between two symmetrically (far away from the channel)
located points, L — length of the channel):

Fext,j = −qj(U/L)ẑ , j = i, g , (10)

(ii) the standard internal Coulomb force between all the charges qj (cations
and dangling ends or gate’s charge), and (iii) the short-range repulsive forces
between ions [12, 34]:

FSR,i =
∑

m6=i

FSR,im = FSR

∑

m6=i

∣

∣

∣

∣

dc

zim

∣

∣

∣

∣

11 zim

dc

, (11)

where the sum over m runs over all the ions in the system, with additional
condition that ions cannot pass through closed gate. zim = zi − zm, dc is
the nearest approach distance between two ions (“soft-sphere” diameter).

The simulations of the above equations were performed with the “forward
evaluation” (cf. [31, 32, 34]):

mi

vi,n+1 − vi,n

δt
= −1

2 γi(vi,n + vi,n+1) + Ri,n + F ({zi,n}) ,

zi,n+1 − zi,n

δt
= vi,n+1 . (12)

Non-standard part is the simulation of single-file motion [32]. Description
of the details of that procedure are given in the Appendix, and the code can
be found in Archives [31].

We used in the simulations the values of parameters corresponding to
potassium cations K+ with atomic mass MK+ = 39 u (= 6.5 × 10−26 kg),
radius rK+ = 0.133 nm, and charge +e (ZK+ = 1). The initial velocities of
the particles were chosen from the Maxwell distribution with room tempera-
ture. The physical parameters were kept constant, varied were values of the
external and heuristic parameters such as voltage U , “concentrations” (en-
trance probabilities Pin) outside the simulation region, height of the gate’s
barriers, etc.

Simulations provided the series of values of net numbers m of cations
passing through the channel in one simulation step δt, i.e., the momentary
ionic currents. From these series the frequency spectra were calculated in
a standard way. In all simulations first 106 steps were rejected, and the
power spectra were calculated from runs of length 0.5 to 1×107δt. We found
that there is a narrow range of the varied parameters, in which the power
spectrum has the characteristics of the flicker noise, independent whether we
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use the heuristic gate, or the motion of dangling ends. This result is shown
in Fig. 10. The flicker-noise character is clearly visible: S(f) ∼ f−α, with
α = 1.05 ± 0.1.

Fig. 10. Power spectra of K+ current calculated from the Brownian Dynamics

model with two different gating mechanisms: (a) “dangling ends”, (b) heuristic

gate (cf. text).

Calculations with various sets of model parameters revealed that crucial
for the appearance of the flicker noise in the ionic nanocurrents are the gating
process itself and the single-file motion. When these conditions are relaxed,
the power spectra behave as f−1.5 or f−2.

4. Final remarks and conclusions

Continuous-type description (modelling) of the ionic transport through
synthetic nanopores, discussed in Section 2, seems to work surprisingly well
when one allows for the non-bulk values of some physical parameters charac-
terising the electrolyte solutions, mainly the mobilities and Debye screening.
On the other hand, the use of bulk values of these parameters still gives qual-
itatively correct predictions of the asymmetry effects and, therefore, can be
used for the rough predictions in the construction of nanopores of desired
properties. It is worth noticing in this context that rectification, asymmet-
rical diffusion, and cation/anion selectivity are present in relatively wide
nanopores of diameters in the narrow parts of the order of magnitude wider
than several particle diameters.

The continuous model not only reproduces correctly the known nanoef-
fects: cation/anion selectivity, rectification and pumping, it also helped in
establishing new features such as the contribution of surface cationic cur-
rents, and the discovery of the asymmetry of nanodiffusion. Moreover, the
model — together with other independent calculations of the continuous
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character [21] — showed that all these nanoeffects derive solely from the
asymmetries of the confined geometrical conditions and of the electrical fields
inside nanochannels and that, therefore, “specific properties” of proteins are
unimportant. However, there remains the open question whether specific
properties of proteins are necessary for cation/cation selectivity?

The continuous model predicts all mentioned above peculiarities of the
nanotransport, except the appearance of the flicker noise. The latter can be
modelled by the Brownian Dynamics (Section 3 above). It was found that
critical for the appearance of the flicker noise are the condition of single-file
motion of ions through the channel and the opening/closing of the gate.

The results presented in Section 3 show also that, although the gating
process itself is crucial for the appearance of the flicker noise in the ionic
nanocurrents, the details of the gating mechanism are unimportant from this
point of view.

It is worth to note that the flicker noise in nanochannels is accompanied
by the non-Markovian character of the current treated as the stochastic
time-series [6, 30, 35].

The essential message from the works presented in this paper is that
all the anomalous phenomena characteristic of ionic nanotransport result
from the confined geometry and from asymmetries of electric fields inside
nanochannels.

Appendix A

Here we present the description of the procedures for the single-file mo-
tion. The procedures for entrances and exits of particles, for the number of
particles located to the left of the gate, as well as the codes for the deter-
mination of the state of the gate (open or closed), and for the equations of
motion are standard and will not be discussed here.

Single-file procedures are based on the fact that the given particle (cation)
i cannot move farther that its neighbours i− 1 and i + 1, which in turn are
limited by their neighbours, i and i−2 or i+2, etc. Therefore, their positions
need to be re calculated. In the simplest version, it is assumed that particles
meet at the middle of their former positions. In better versions such a pair
of particles meets at the position calculated from their former positions and
from their new velocities. On the other hand, the particles retain their
velocities until a given pair meets, then they collide and — in the simplest
version — exchange their velocities (behave as hard spheres). Again, it is
possible to refine this simplest procedure. Because the results of the above-
described procedure depend on whether the recalculations are done “up” or
“down”, i.e., from particle number 1 to N , or from N to 1, both reordering
need to be realized independently, their results averaged, and the whole
scheme iterated until self-consistency is attained.
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