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We introduce an approximation of the risk processes by anomalous dif-
fusion. In the paper we consider the case, where the waiting times between
successive occurrences of the claims belong to the domain of attraction of
α-stable distribution. The relationship between the obtained approxima-
tion and the celebrated fractional diffusion equation is emphasised. We also
establish upper bounds for the ruin probability in the considered model and
give some numerical examples.

PACS numbers: 05.40.–a, 02.50.Ey, 05.45.–a

1. Introduction

Since certain operational risk data are in many ways akin to insurance
losses, it is clear that methods from the field of non-life insurance can play
a fundamental role in their quantitative analysis, [1]. The key problem in
the classical Cramér–Lundberg model of the collective risk theory concerns
finding the ruin probability, i.e. the probability that the risk process

R(t) = u+ ct−

Nt∑

i=1

Xi (1)
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falls down below zero level. Here u is assumed to be an initial risk capital,
c > 0 a premium paid by insurer in time unit and Xi losses that happen in
random moment modelled by the counting process Nt. The commonly used
method of finding the ruin probability is first to determine the distribution
of claims Xi, then to derive the differential equations which are satisfied by
the unknown ruin probability and finally to obtain the properties of the ruin
probability directly from solutions of the equations [2].

Unfortunately, the ruin probabilities in infinite and finite time can only
be precisely calculated for a few claim distributions. Additionally, most
methods use the standard Poisson process as the counting process, which
is the additional restriction. Thus, from a practical point of view, finding
a reliable approximation, especially in the case when the Monte Carlo tech-
niques cannot be used, is of great interest. A survey of the most popular and
effective numerical approximations of ruin probability can be found in [3].

An alternative method consists in replacing the continuous-time ran-
dom walk (CTRW), i.e. the random part of the risk process R(t), with
the diffusion process. The basic idea is to make the claim sizes small and
simultaneously to let the number of claims grow in such a way that the risk
process converges weakly to a diffusion [4].

In the case, when the claims indicate the heavy-tailed distributional
properties, it is also possible to approximate the risk process with an
α-stable Lévy motion with drift. The detailed discussion of such approach
can be found in [5].

In this paper we consider a more general case, when both the waiting
times between consecutive claims and the claims themselves are heavy-tailed.
In such a setting the random part of R(t) can be replaced with the anomalous
diffusion process (see next section for details).

An interesting application of our results is the recently developed promis-
ing technique of modelling the operational risk of non-financial corpora-
tions [7]. In this approach, every random variable Xi in (1) represents dif-
ferent loss type and the whole sum yields the total operational loss of the
corporation. Since the concept of CTRW has found its widespread appli-
cations in many other scientific fields, our theoretical and numerical results
can be applied in each of these fields. Particularly, results presented in the
paper allow for the use of heavy-tailed distributions to model claim sever-
ities as well as waiting times between their occurrences. This is especially
important when considering the operational risk of a large company, like
KGHM, that can include such high, but not very frequent, risks as natural
disasters and fraud.

Our considerations and results are related to the methodology of the
CTRW. Thus, they can be applied not only in the field of insurance and
collective risk theory, but also in physics, for example in the Cole–Cole
relaxation responses, see [6].
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2. Convergence of risk processes to anomalous diffusion

Let us begin with the basic concepts and definitions from the classical
collective risk theory (see e.g. [2]). Given a sequence Ti, i = 1, 2, . . ., of
independent, identically distributed (i.i.d.) and positive random variables
representing the time intervals between the consecutive occurrences of the
claims, we denote by

T (n) =

n∑

i=1

Ti , T (0) = 0 , (2)

the time interval of n appearances of the claims. In this setting, the counting

process describing the number of claims in the interval (0, t] takes the form

Nt = max{n : T (n) ≤ t} . (3)

The process Nt is also referred to as the renewal process.
The successive claims Xi, i = 1, 2, . . ., are assumed to be a sequence of

i.i.d. random variables, independent of Ti, i = 1, 2, . . .. Consequently, the
cumulative value of n successive claims is given by

X(n) =

n∑

i=1

Xi, X(0) = 0 . (4)

Now, the classical risk process has the form

R(t) = u+ ct−X(Nt) = u+ ct−

Nt∑

i=1

Xi , (5)

where u > 0 is the initial risk reserve of the company, and c > 0 is the risk
premium per unit time paid by the policyholders. Let us notice that the
random part of R(t) is the well-known CTRW model which is fundamental
for the understanding of the diffusion phenomenon. The notion of CTRW
was first introduced in pioneering works by Scher, Montroll and Weiss [8,9].
Since then CTRW became a widely used tool in modelling various real-life
phenomena (see e.g. [10–12]).

Let us now assume that the time intervals Ti fulfil the following require-
ment P (Ti > t) ∼ t−α as t → ∞, where 0 < α < 1. It implies that they
belong to the domain of attraction of a totally skewed α-stable distribu-
tion Sα,1(t) (we use the notation Sα,β(t) for a α-stable distribution, where
0 < α ≤ 2 is the index of stability and |β| < 1 is the skewness parameter,
see [13,14]). Thus, from the generalised central limit theorem [14] we obtain
for the sum (2)

n−1/α T ([nτ ])
d

−−−−→n→∞ U(τ) , (6)
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where U(τ) is the α-stable subordinator, i.e. the strictly increasing α-stable

Lévy motion. Here “
d

−→” denotes convergence in probability and “ [x]” is
the integer part of x. In a similar manner, if we assume that the claims Xi

belong to the domain of attraction of a γ-stable distribution Sγ,β(x) with
0 < γ ≤ 2, then we obtain for (4)

n−1/γ X([nτ ])
d

−−−−→n→∞ Y (τ) . (7)

Here Y (τ) is the γ-stable Lévy motion. Note that for γ = 2 we get the
classical Brownian motion.

Using the fact that the following relationship between T (n) and the
counting process Nt holds

{T ([x]) ≤ t} = {Nt ≥ x}

and applying the limit result (6) we have

n−αNnt
d

−−−−→n→∞ Vt , (8)

where Vt is the inverse α-stable subordinator [15] defined as

Vt = inf{τ : U(τ) > t} . (9)

It is not difficult to show that the subordinator Vt is self-similar with index
H = α. Since we are able to compute the moments of the random variable
V1, the series expansion of the Laplace transform ĝ(u, t) = 〈exp(−uVt)〉 of Vt,
(we use the notation 〈X〉 for the expected value of X), yields the following
result

ĝ(u, t) = Eα(−utα) , (10)

where

Eα(z) =
∞∑

n=0

zn

Γ (nα+ 1)
(11)

is the Mittag–Leffler function [16].
Now, we construct a sequence Qn(t) of risk processes

Qn(t) = un + cnt−

Nnt∑

i=1

Xi .
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If the following four assumptions are fulfilled:

• time intervals Ti belong to the domain of attraction of a totally skewed
α-stable distribution Sα,1(t);

• claims Xi belong to the domain of attraction of a γ-stable distribution
Sγ,β(x) with 0 < γ ≤ 2;

• n−α/γ un −−−−→n→∞ u ;

• n−α/γ cn −−−−→n→∞ c ;

then, taking advantage of (7) and (8), we get

n−α/γQn(t) = n−α/γun + n−α/γcnt− n−α/γX(Nnt)

≈ n−α/γun + n−α/γcnt− (nα)−1/γX([nαVt])
d

−−−−→n→∞ u+ ct− Y (Vt) .

Thus, we have shown that the limit of the sequence of risk processes Qn(t)
is given by Q(t) = u + ct − Y (Vt). The subordinate process Y (Vt), as the
only random part of Q(t), plays the key role in the considered model. Let
us remind that Y (τ) belongs to the family of γ-stable Lévy motions and Vt

is the inverse α-stable subordinator. Basing on the recent paper [15], we call
Y (Vt) anomalous diffusion (see Fig. 1). Therefore,

Q(t) = u+ ct− Y (Vt) (12)

is called the anomalous diffusion approximation of the risk processes.
As a first special case, let us consider the situation, when Y (τ) is the

classical Brownian motion, i.e. γ = 2. Since Y (τ) and Vt are assumed to
be independent stochastic processes, the probability density function (p.d.f.)
p(x, t) of Y (Vt) is given by the formula

p(x, t) =

∞∫

0

f(x, τ)g(τ, t)dτ , (13)

where f(x, τ) and g(τ, t) are the p.d.f.s of Y (τ) and Vt, respectively. Next,
the Fourier transform p̃(k, t) = 〈exp(ikY (Vt))〉 takes the form

p̃(k, t) =

∞∫

0

f̃(k, τ)g(τ, t)dτ . (14)



1652 M. Magdziarz, P. Mista, A. Weron

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

V
t

(c)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−2

−1.5

−1

−0.5

0
Y

(τ
)

(b)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1.5

−1

−0.5

0

Y
(V

t)

(a)

t 

τ 

t 

Fig. 1. An exemplary realization of: (a) anomalous diffusion Y (Vt), (b) γ-stable

Lévy motion Y (τ), (c) inverse α-stable subordinator Vt. The parameters are α =

0.7 and γ = 2 (Brownian motion). The constant intervals of Y (Vt) indicate the

heavy-tailed waiting times between successive claims. Note the similarities between

the constant intervals of Y (Vt) and Vt, and the similarities between Y (Vt) and Y (τ)

in the remaining domain.

Taking advantage of the fact that the Fourier transform of the Brownian
motion is given by

f̃(k, t) = 〈exp(ikY (τ))〉 = exp(−τk2) ,

and using results (10) and (14), we see that the Fourier transform of the
anomalous diffusion Y (Vt) is given by

p̃(k, t) = 〈exp(ikY (Vt))〉 = Eα(−k2tα) .

The above result proves that the p.d.f. of Y (Vt) is the solution of the cele-
brated fractional diffusion equation [17]

∂p(x, t)

∂t
= 0D

1−α
t

∂2

∂x2
p(x, t).

Since in this case the second moment of Y (Vt) is given by

〈Y 2(Vt)〉 =
2

Γ (1 + α)
tα,

we obtain the typical anomalous-diffusion behaviour of the considered model.
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The second special case can be obtained by letting the parameter α→ 1.
In this setting, the inverse α-stable subordinator Vt becomes determinis-
tic linear function. Then, the anomalous diffusion Y (Vt) is the standard
γ-stable Lévy motion and Q(t) becomes the γ-stable approximation of risk
processes. This is the case discussed in detail in [5].

3. The ruin probability

Considering the ruin probability problem, let us begin with defining the
ruin time T as the first time the company has a negative risk reserve. For
the model with risk process Q(t), the ruin time can be expressed as

T = inf{t > 0 : Q(t) < 0} .

Finding the ruin probability ψ(u) defined as

ψ(u) = P (T <∞|Q(0) = u) ,

i.e. the probability that the risk process becomes negative, is one of the
major problems of the risk theory. However, an insurance company is mostly
interested in finding the ruin probability in finite time

ψ(u, t) = P (T ≤ t|Q(0) = u) ,

which is the probability that the risk process drops below zero level before
time t. A comprehensive study concerning this subject can be found in [2].
In what follows, we find the upper bounds for the ruin probability in finite
time, in the model with risk process Q(t) = u + ct − Y (Vt) given by the
previously introduced anomalous diffusion approximation (12).

We begin with the case, when the γ-stable Lévy motion Y (τ) is sym-
metric. Then, we can use the following inequality [5]

P

(
sup

0≤s≤τ
Y (s) ≥ z

)
≤ 2P (Y (τ) > z) . (15)

Formula (15) together with some standard arguments yields

P

(
sup

0≤s≤t
Y (Vs) ≥ z

)
≤ P

(
sup

0≤s≤Vt

Y (s) ≥ z

)

≤ 2P (Y (Vt) > z) . (16)
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Now, using the above result, we are able to establish the following upper
bound for the ruin probability in finite time horizon

ψ(u, t) = P (T ≤ t|Q(0) = u) = 1 − P

(
inf

0≤s≤t
(u+ cs− Y (Vs)) ≥ 0

)

= 1 − P

(
sup

0≤s≤t
(−u− cs+ Y (Vs)) ≤ 0

)

= P

(
sup

0≤s≤t
(−u− cs+ Y (Vs)) > 0

)

≤ P

(
sup

0≤s≤t
(Y (Vs)) ≥ u

)
≤ 2P (Y (Vt) > u) .

Finally, we have obtained the following result

ψ(u, t) ≤ 2P (Y (Vt) > u) . (17)

It is worth mentioning that the anomalous diffusion Y (Vt), as a subordina-
tion of two independent stochastic processes Y (τ) and Vt, can be effectively
simulated with the help of some standard numerical techniques for α-stable
processes (see [18] for details). An exemplary realizations of the risk process
Q(t) are presented in Fig. 2. Since Y (Vt) is α/γ-selfsimilar, we have that

Y (Vt)
d
= tα/γY (V1) .

Thus, it is enough to employ the Monte Carlo methods only for calculat-
ing the distribution of Y (V1), in order to compute the probability on the
righthand side of (17).

For the more general case, when Y (τ) is a γ-stable Lévy motion with
arbitrary γ 6= 1 and |β| ≤ 1, we can use the following inequality [5]

P

(
sup

0≤s≤τ
Y (s) ≥ z

)
≤

1

q
P (Y (τ) > z) . (18)

Here

q = P (Y (τ) > 0) =
1

2
+

1

πα
arctan(β tan(πα/2)) .

Then, the similar arguments as those used for the symmetric case, yield the
following upper bound for the ruin probability in finite time

ψ(u, t) ≤
1

q
P (Y (Vt) > u) . (19)

Also in this case, we can employ the same numerical techniques, as in the
symmetric case, in order to simulate sample paths and to calculate the dis-
tribution of Y (Vt).
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Fig. 2. Five trajectories obtained by simulations of the risk process Q(t) = u+ct

−Y (Vt) with parameters u = 1 and c = 1/2. Here Vt is the inverse α-stable

subordinator with α = 0.9, and Y (τ) is the standard Brownian motion.

4. Conclusions

We have constructed the sequence of risk processes that converges in
probability to the risk process, whose random part is the well-known anoma-
lous diffusion. The key assumption in our construction was that both the
waiting times between successive claims as well as the claim severities are
in the domain of attraction of stable distributions. Our considerations and
results provide a promising link between the collective risk theory and the
anomalous diffusion. In particular, we have presented in detail the relation
between our model and the celebrated fractional diffusion equation. We
have also derived the upper bounds for the ruin probability in the discussed
model and explained, how the problem can be illustrated numerically. We
hope that anomalous diffusion approximation of risk processes developed
here provides a new tool which may be useful towards the statistical analy-
sis of operational loss data.
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