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Following the route of Smoluchowski we continue the study of single
active Brownian particles by investigations of the motion of pairs. After
studying free motion we consider the relative motion of bound pairs. We
study the attractor structure in a space of five dynamical variables. In par-
ticular we investigate the translational motion and analyze the bifurcations
between the translational and the rotational modes of the pairs. The influ-
ence of noise is studied. Finally, we investigate extensions to the dynamics
of N -particle swarms with harmonic interactions.

PACS numbers: 05.40.Jc, 05.45.–a

1. Introduction

A decade after his first investigations on Brownian motion Smoluchowski
started to work on the dynamics of pairs. His motivation was based on some
interest in chemical kinetics and in particular in the kinetics of coagulation
processes [1]. In this connection Smuluchowski studied the relative Brownian
motion of pairs of particles. He quickly realized that the kinetics of pairs may
be reduced to the kinetics of single particles and stated: “In this connection
it can be easily proven that the relative displacement of two particles which
move independently of each other is again given by the ordinary Brownian
motion formula. The only difference is that the diffusion coefficient D is
equal to the sum of the coefficients of the two particles Da+Db” [1]. Another
decade later Onsager formulated equations for the Brownian motion of pairs
of ions and developed a new conductivity theory of electrolytes on the basis
of the pioneering work of Debye and Hückel [2].
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Active Brownian motion is an extension of the concept of Brownian mo-
tion to self-propelling particles which was developed mainly by Klimontovich
and his school [3, 4]. Here we concentrate on the Brownian motion of pairs
of active (self-propelling) particles. This may be considered as a first step
to studies of the dynamics of moving swarms of animals. We introduce the
general notion of “swarms” for confined systems of particles (or more general
objects) driven to states far from equilibrium. The study of living objects
like swarms of animals is a rather young field of physical studies (see e.g.

Refs. [5–7]).
Since the dynamics of swarms of driven particles has attracted the in-

terest of theorists, several interesting effects have been revealed and in part
already explained. We mention the early studies of Niwa [12] and the com-
prehensive survey of Okubo and Levine [13] on swarm dynamics in biophysics
and ecology. In the survey of Okubo and Levine we find a classification of
the modes of collective motions of swarms of animals. It is pointed out that
animal groups have three typical modes of motion:

1. translational motions,

2. rotational excitations and

3. amoeba-like motions.

This classification is confirmed by several experimental studies. For example,
Ordemann, Balazsi and Moss [8] studied the modes of swarming of daphnia.
Depending on the existence of an external light source in the center, a swarm
of daphnia switches from translational motion to rotations around a light
shaft in the center.

At present it seems to be impossible to describe all the complex collective
motions observed in nature. Instead we study in the following the dynamical
modes and the distribution functions of a simple model based on the con-
cept of active Brownian motion. We investigate pairs of Brownian particles
confined by linear attracting forces which are self-propelled by active fric-
tion. Then we will show that in the case of linear forces, the study of pairs
may be easily extended to N -particle systems. This model is considered as
a rough picture for the collective motion of non-equilibrium clusters and of
swarms of cells and organisms as well [9–11]. For alternative models based
e.g. on velocity–velocity interactions see Refs. [5–7]. Our special interest is
the influence of noise, since noise is responsable for many interesting effects
and, in particular, noise may lead to transitions between the deterministic
attractors [14–16]. By extending these studies we will investigate here the
stochastic transition from translations to rotations analytically.

We begin with the simplest case N = 2 and will show that the relative
motion of pairs of driven Brownian particles reproduces already some of the
typical modes of motions of swarms and in particular the transition from
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translation to rotation. Needless to say that the study of the motion of pairs
may also be useful for studies in chemical kinetics and in other fields where
relative motion is of relevance as shown already by Smoluchowski. Finally
we extend, within the framework of linear forces, the studies to arbitrary N
considering this way global coupling.

2. Stochastic dynamics of free motion

We postulate a dynamics of Brownian particles which is determined by
the Langevin equation:

ṙi = vi , mv̇i = F i +
√

2Dξ(t) , (1)

where ξ(t) is a stochastic force with strength D and a δ-correlated time
dependence:

〈ξi(t)〉 = 0 , 〈ξi(t)ξj(t
′)〉 = δ(t − t′)δij . (2)

The dissipative forces are expressed in the form

F i = −mγ(v2
i )vi . (3)

The function γ(x) denotes a velocity-dependent friction, which in our model
has a negative part. The second term expresses a (small) tendency to syn-
chronize the individual velocity with the swarm velocity V (t) which is the
velocity of the center of mass of the swarm. This way the dynamics of
our Brownian particles is determined by the Langevin equation with dissi-
pative contributions. In the case of thermal equilibrium systems we have
γ(v) = γ0 = const. In the general case where the friction is velocity depen-
dent we will assume that the friction is monotonically increasing with the
velocity and converges to γ0 at large velocities. In previous work we often
used an ansatz based on the depot model for the energy supply [9, 11]

γ(v2) =

(

γ0 −
dq

c + dv2

)

, (4)

where c, d, q are certain positive constants characterizing the energy flows
from the depot to the particle. Dependent on the parameters γ0, c, d, and q
the dissipative force functionmay have one zero at v =0 or twomore zeros with

v2
0 =

d

c
ζ , ζ =

qd

cγ0
− 1 . (5)

Here ζ is a bifurcation parameter. In the case ζ > 0 a finite characteristic
velocity v0 exists which determines an attractor of motion. Then we speak
about active particles. For |v| < v0, the dissipative force is positive, i.e.



1660 W. Ebeling

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5

γ
/
γ

0

v/v
0

δ=1

δ=2

δ=1.2

δ=0

Fig. 1. The typical form of a friction function with active (negative) part at small

velocities (parameter δ = ζ + 1).

the particle is provided with additional free energy. Hence, slow particles
are accelerated, while the motion of fast particles is damped (see Fig. 1).
Sometimes we will use a simpler expression for the the friction which is valid
near to the bifurcation point ζ ≪ 1. Formally we obtain this expression
by a Taylor expansion cut after the second term which leads to Rayleigh
formula containing only 2 constants

γ(v2) =
(

−α + βv2
)

. (6)

The stationary velocity is then

v2
0 =

α

β
. (7)

Let us study now the free (independent) motion of active particles in a two-
dimensional space, ~r = {x1, x2}. The stationary solution of the correspond-
ing Fokker–Planck equation for 1 particle reads [11]

P0(~v1) = C
(

1 + dv2
1

)(q/2Dv)
exp

[

− γ0

2Dv
v2
1

]

, (8)

where Dv = D/m2. In the following we will use units with m = 1 and
D = Dv. The mean square displacement is in the limit of strong driving

〈(~r1(t) − ~r1(0))
2〉 =

v4
0

Dv
(2t) . (9)

For two particles we introduce the coordinates of the center of mass and the
relative motion with respect to the center of mass

~R =
(~r1 + ~r2)

2
, ~x = (~r1 − ~r2) . (10)
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The center of mass shows exactly the same displacement as for one particle.
However, the relative motion of pairs shows the double displacement in full
agreement with Smoluchowski’s findings for the usual Brownian motion.

〈(~x(t) − ~x(0))2〉 =
2v4

0

Dv
(2t) . (11)

So far the usual Brownian motion and the active Brownian motion seem to
behave in a quite similar way up to the completely different expression for
the effective diffusion coefficient (the factor in front of 2t).

3. Stochastic dynamics of pairs with linear radial attraction

Let us consider two Brownian particles which are pairwise bound by
an attracting radial pair potential U(r1 − r2). The pair of particles will
form dumb-bell like configurations. Then the motion consists of two in-
dependent parts: The free motion of the center of mass and the relative
motion. The center of mass R = (r1 + r2)/2 moves with the mass velocity
V = (v1 + v2)/2. The corresponding coordinates are X1 = (x11 + x21)/2
and X2 = (x12+x22)/2. The relative motion under the influence of the forces
is described by the relative radius vectors r = (r1 − r2)/2 and the relative
velocity v = (v1 − v2)/2. The relative coordinates are x1 = (x11 − x12)/2
and x2 = (x12 − x21)/2. The deterministic motion of the center of mass is
described by the equations

m
d

dt
V =

1

2
[F (V + v) + F (V − v)] . (12)

The relative motion is described by

m
d

dt
v + U ′(r)

r

r
=

1

2
[F (V + v) − F (V − v)] . (13)

For the case of Rayleigh-driving, the dynamical equations have a simpler
form

m
d

dt
V =

[

α − βV 2 − βv2
]

V − 2β(V · v)v , (14)

m
d

dt
v + U ′(r)

r

r
=

[

α − βv2 − βV 2
]

v − 2β(V · v)V . (15)

This system possesses two types of attractors. The first attractor corre-
sponds to a translation of the dumb-bell

V = v0n , R(t) = v0nt + R(0) . (16)
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Fig. 2. Schema of the attractor structure: There exist one stable point (above)

corresponding to the translational motion of the (not rotating) pair, and two limit

cycles (below) corresponding to left/right rotations of the pair at rest.

The second and the third attractors correspond to left and right rotations
of the dumb-bell at rest. The principal schema of the attractor structures
is shown in Fig. 2. In order to study the dynamical problem in more detail
we consider the special case of linear attracting forces: U = mω2

0r
2/2. We

introduce further the coordinates z = V 2, corresponding to the velocity of
the center of mass squared, and the relative coordinates and relative veloci-
ties x1, x2, v1, v2, parallel and perpendicular to the velocity of the center of
mass. Then we get the following 5 differential equations

ż = 2z(α − βz − 3βv2
1 − βv2

2) , (17)

v̇1 = v1(α − 3βz − βv2
1 − βv2

2) − ω2
0x1 , (18)

v̇2 = v2(α − βz − βv2
1 − βv2

2) − ω2
0x2 , (19)

ẋ1 = v1 , (20)

ẋ2 = v2 . (21)

As a first result of analysis we see that the system has indeed a stable point
attractor at z = α/β, v1 = v2 = x1 = x2 = 0. The stability analysis shows
that this point is linearly stable in all directions except in the direction
v2 corresponding to the motion perpendicular to the translation. In other
words, the fixed point corresponding to translation is stable only in the
second (quadratic) approximation. The parabola

βz = (α − βv2
2) , v1 = 0 , (22)
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which connects the stable fixed point at z = α/β with the limit cycles at
z = 0 plays a very special role in the dynamics. This curve has in the
first order neutral stability, and correspondingly it shows the character of
a saddle. The saddle character facilitates transitions between the attractors
along the path (22).

In Figs. 3 and 4 we show several numerical solutions corresponding to
initial conditions in the attractor region We see from the figures that typ-

Fig. 3. Solutions of the o.d.e. (17)–(21) for α = β = 1 and initial conditions

corresponding to the region of the translational attractor. We show the transversal

velocity v2(t) (above) and the longitudinal velocity v1(t) (below) versus time. Note

the weak damping of the transversal oscillation and the strong damping (and very

small amplitudes) of the longitudinal mode.

ically the relative velocity perpendicular to the translation v2(t) decays to
zero very slowly, however the relative velocity v1(t) is strongly damped. Fur-
ther the velocity of the center of mass goes to the attractor value α/β in
a slow oscillatory way. The attracting region belonging to the stable point
z = z0 = α/β is rather complicated, in general it corresponds to the region
|z − z0| ≪ z0 but this is not generally true. For example, along the saddle-
like curve βz = α − βv2

2 , v1 = x1 = x2 = 0 the attracting region goes far to
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Fig. 4. Solutions of the o.d.e. (17)–(21) for α = β = 1 in the region of the

translational attractor: We show above the center of mass motion z(t), and below

the corresponding transversal oscillations v2(t).

the neighborhood of z = 0. Beside the attractor of translational motion at
z = α/β we find other attractors in the plane z = 0 corresponding to rest of
the center of mass. Indeed there are two attractors representing left/right
rotations (see our schema). The two limit cycles in question have both the
projections

v2
1 + v2

2 = v2
0 , x2

1 + x2
2 = (v0/ω0)

2 , z = 0 . (23)

Why this attractor is getting unstable if we introduce a translational mo-
tion. In order to understand this we introduce a small but finite translation
z1 ≪ v2

0 . Due to the structure of Eqs. (21) this leads immediately to a de-
struction of the rotational symmetry of the limit cycles, to an elliptic defor-
mation with the longer axis in the direction perpendicular to the translation.
As shown by Erdmann et al. [15] the loss of rotational symmetry leads to
leaving an Arnold tongue of stability and consequently to a destruction of
the limit cycles. We see that the rotations are indeed stable only in and near
to the plane z = 0 i.e. for swarms at rest or near to the resting state.
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Fig. 5. The vectorfield v1 − v2 for 2 driven particles with harmonic interaction.

We observe the high stability with respect to elongations in z1-direction and low

stability in z2-direction.

Fig. 6. Vectorfields for 2 driven particles with harmonic interaction: (above: plane

v1 — z, below: plane v2 — z). The fields illustrate the special role of the parabolic

saddle curve.
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In order to understand the attractor structure in more detail we will
give also several representations of the vector fields corresponding to the
d.e. (21). The result of our analysis is shown in Figs. 5 and 6. In order to
find the physical meaning of the different attractors we may use a different
way of writing the basic dynamical equation

d

dt

V 2

2
= V 2(α − βV 2 − βv2 − 2βv2

1) , (24)

d

dt

[

v2

2
+ ω2

0

r2

2

]

= v2
(

α − βV 2 − βv2 − 2βv2
1

)

, (25)

d

dt

[

v2
1

2
+ ω2

0

x2
1

2

]

= v12
(

α − βV 2 − βv2 − 2βV 2
)

, (26)

d

dt

r2

2
= r · v . (27)

Writing the dynamical equations in this form of energy balances — which by
the way is valid also in the 3-dimensional case — shows clearly that the most
important physical processes are connected with the exchange of energy. In
the first attractor state which corresponds to translation of the pair, all the
energy is concentrated in the kinetic energy of the center of mass. In the
alternative sttractors which correspond to the limit cycles, all the energy is
sitting in the rotational motion, the center of mass does not move and does
not require energy.

4. The influence of noise on the dynamics

Including noise we expect some distribution around the attractors. Let
us estimate the distributions in the simplest case. Decoupling the stochastic
equations by replacing v2

1 , v
2
2 by averages we get for the mean velocity

V̇ = V
(

α − βV 2 − 3β〈v2
1〉 − β

〈

v2
2

〉)

+
√

2Dξ(t) . (28)

This leads to the distribution of the center of mass velocity

f (0)(V ) = C exp

[

− 1

D

(

α1V
2 − βV 4

)

]

. (29)

According to this distribution the most probable velocity is given by

V 2
1 =

α1

β
, α1 = α − 3β

〈

v2
1

〉

− β
〈

v2
2

〉

. (30)

This distribution as well as the most probable velocity contain still an un-
known constant α1 which is determined by the distributions of the longi-
tudinal and translational velocities. First, we linearize the equation for the



Active Brownian Motion of Pairs and Swarms of Particles 1667

relative longitudinal motion

v̇1 = −2α1v1 − ω2
0x1 +

√
2Dξ1(t) . (31)

With respect to the transversal dispersion we have some difficulties since
strictly speaking they are infinite due to the neutral stability of the transver-
sal velocities [16]. We approximate the Langevin equation for the transversal
fluctuations by

v̇2 = −βv3
2 − ω2

0x2 +
√

2Dξ2(t) . (32)

The corresponding distribution for the velocity fluctuations (which are un-
coupled in our approximation) is given by

f(v1, v2) = C exp

[

− 1

2D

(

2α1v
2
1 +

β

2
v4
2

)]

. (33)

We remind that this distribution corresponds to a driven motion of the
center of mass supplemented by a small oscillatory relative motion against
the center of mass. The corresponding dispersions are

〈v2
1〉 ≃

D

2α1
. (34)

〈v2
2〉 ≃ 2

Γ (3/4)
√

D

Γ (1/4)
√

β
≃ 0.676

√
D√
β

. (35)

We see in agreement with the findings in [16] that the dispersion of the lon-
gitudinal velocity fluctuations with D and the dispersion of the transversal
fluctuations goes with

√
D. The dispersions are connected by the relations

α1 = α − 3D

2α1
β − 0.676

√

D

β
, (36)

α2
1 − α2α1 +

3

2
βD = 0; α2 ≃ α − 0.676

√

D

β
. (37)

The quadratic equation has the solution

α1 =
1

2
α2 +

√

α2
2

4
− 3

2
βD . (38)

We see that the dispersion of V 2 is maximal for the critical noise strength

Dcr =
α2

2

6β
. (39)
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For the case α = β = 1 this gives the critical value Dcr ≃ 0.01. This is in
quite good agreement with the value Dcr ≃ 0.07 found in a simulation for
this choice of parameters [16].

The solutions for the rotational mode are distributed around two limit
cycles corresponding to left or right rotations.

Summarizing our findings we may state: For two interacting active par-
ticles there exist a translational and a rotational mode. In the rotational
mode the center of the ”dumb-bell” is at rest and the system is driven to
rotate around the center of mass. Only the internal degrees of freedom are
excited and we observe driven rotations. In the translational mode of the
dumb-bell the center of mass of the dumb-bell makes a driven Brownian
motion similar to a free motion of the center of mass.

5. Harmonic swarms with global coupling

This section is devoted to an extension of the previous results to N > 2.
We consider two-dimensional systems of N point masses m with the numbers
1, 2, . . . , i, . . . ,N and assume that the masses m are confined by linear pair
forces mω2

0 (ri − rj). This model was first proposed and investigated by
Schweitzer at al. [14]. The dynamics of the system is given by the following
equations of motion

d

dt
ri = vi , m

d

dt
vi + mω2

0 (ri − R(t)) = F i(vi) +
√

2Dξi(t) . (40)

As in the case N = 2 we start with an investigation of the translational mode
of this system. For the mean velocity we find by summation and expanding
around V in a symbolic representation

d

dt
V = F (V ) +

1

2
(δv) · F ′′

(V ) · (δv) + . . . . (41)

In the translational mode of this system all the particles form a noisy flock
which moves with nearly constant velocity modulus

V (t) = Ṙ(t) = v0n , ri(t) − R(t) = 0; i = 1, . . . , N . (42)

The direction n may change from time to time due to stochastic influences.
In order to find explicite results we simplify the equation for the mean mo-
mentum V similar as in the previous section for N = 2 assuming

d

dt
V = (α−βV 2)(V )− β

N

〈

∑

i

(δvi)
2
〉

−2
β

N

〈

∑

i

(V δvi) δvi

〉

+
√

2Dξ(t) .

(43)
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In this way we decouple the center of mass motion from the relative motion.
By averaging with respect to δvi and neglecting the tensor character of the
coupling to the relative motion we get

d

dt
V = (α1 − βV 2)V +

√
2Dξ(t) . (44)

Here the effective driving strength α1 is approximated as in the case N = 2
by

α1 = α − β

N

∑

i

[

(δvi1)
2 + (δvi2)

2
]

. (45)

The factor α1 has still to be estimated. The corresponding velocity distri-
bution is

f (0)(V ) = C exp

[

1

2D

(

α1V
2 − βV 4

)

]

. (46)

This way we find the most probable velocity

V 1
2 =

α1

β
. (47)

The most probable velocity of the swarm is shifted to values smaller than
for the free motion. The shift with respect to the free mode V0 = v0n is
proportional to the noise strength D. As in the case N = 2 this solution
breaks down if the dispersion δv2 is so large that the linearization around
V is no more possible. With increasing noise we find a bifurcation. This
corresponds to the findings of Erdmann et al. [16]. The dispersion in the
direction of the flight V is smaller than perpendicular to it. Here we modify
this approach and include an analytical study of the bifurcation following
same route as in the case N = 2.

For the longitudinal fluctuations around the center om mass of the swarm
we find

d

dt
δvi1 + ω2δxi1 = −α1δvi1 +

√
2Dξi1(t) . (48)

For the transversal fluctuations against the center om mass of the swarm we
find similar as in the previous section

d

dt
δvi2 + ω2δxi2 = −β(δvi2)

3 +
√

2Dξi2(t) . (49)

In this way the distribution of the relative velocities can be approximated as

f(vi) = C exp

[

− 1

2D

(

α1(δvi1)
2 +

β

2
(δvi2)

4

)]

. (50)
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Following now the same route as for N = 2 we find the same quadratic
equation for α1 as for N = 2. This way we find again that the translational
mode of V 2 breaks down beyond the critical noise strength

Dcr =
(α − 0.676

√

D/β)2

6β
. (51)

This is connected with the fact that the dispersion of V 2 is real only for
strength of noise below this critical value. Above the critical value the roots
are complex what is a hint to the existence of the rotational solutions. Our
result is quite similar but not identical to earlier findings for N ≫ 1 [16].
In simulations Erdmann et al. found for α = β = 1 a critical noise strength
Dcr ≈ 0.07 [16]. This is near to our theoretical estimate with which gives
Dcr ≃= 0.1. This way we confirmed the numerical findings for N ≪ 1 by
a theoretical estimate.

6. Conclusions

We studied here the active Brownian dynamics of pairs of self-propelled
particles with velocity-dependent friction and attracting interactions. Con-
finement was created by pair-wise linear attracting forces. Our basic results
may be summarized as follows:

By analysis of the simple models for N = 2 and N− arbitrary,
we could identify analytically two qualitative modes of move-
ment: rotational and translational modes. Due to the noise the
Brownian particles may switch from a translational mode to one
of two rotational modes. Also transitions between the two rota-
tional modes (limit cycles) are possible, this means inversion of
the angular momentum (direction of rotation) [11, 15].

The situation which is for N = 2 described by 5 Langevin equations may
be extended — at least in the harmonic approximation — to an arbitrary
number of particles N . Summarizing our findings we may state the existence
of two limit states:

1. Translational motions of the swarm with fluctuating relative positions,
the energy is concentrated in the translational degree of freedom.

2. Rotations of the swarm as a whole around the common center of mass,
there are no translations, the energy is concentrated in the internal
angular momentum.

In spite of the little success we achieved for N -particle systems, the way to
develop a more general theory in the spirit of statistical mechanics is still
very long [17].
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We note however, that the study of dynamic modes of collective move-
ment of pairs or swarms may be of some importance for the understanding of
many biological and social collective motions. To support this view we refer
again to the book of Okubo and Levin [13] where the modes of collective
motions of swarms of animals are classified in way which reminds very much
the theoretical finding for the model investigated here. In particular we
mention also the motion of animals in water, for example the collective mo-
tion of daphnia [8]. Let us conclude with a quotation from Smoluchowsk’s
work [1]: “One can hope that this theory will prove useful as a guide for
more advanced investigations in this area, which up till now has been quite
inaccessible to mathematics”.

The research has been supported in part by the Marie Curie Actions
Transfer of Knowledge project COCOS grant (6th EU Framework Pro-
gramme under contract MTKD-CT-2004-517186).
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