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Cold atomic gases placed in optical lattice potentials offer a unique tool
to study simple tight binding models. Both the standard cases known from
the condensed matter theory as well as novel situations may be addressed.
Cold atoms setting allows for a precise control of parameters of the systems
discussed, stimulating new questions and problems. The attempts to treat
disorder in a controlled fashion are addressed in detail.

PACS numbers: 03.75.Lm, 73.43.Nq

1. Introduction

Ultra-cold atoms in optical lattices are a unique tool for studying models
and situations that are typically met in condensed matter theory. A laser
light, detuned from the atomic transition, affects external atomic degrees
of freedom. For sufficient detuning, the upper states can be eliminated
adiabatically from the description, the atom (in the ground state) moves
in a potential proportional to laser intensity and inversely proportional to
the detuning [1]. A standing wave laser field produces a stationary one-
dimensional (1D) periodic potential with the lattice constant being a half
of the light’s wavelength. A cubic three-dimensional (3D) lattice is realised
with 3 pairs of mutually orthogonal beams, etc.

As shown in a seminal now work [2] sufficiently cold atomic sample placed
in such a lattice is very well described by the so called Bose–Hubbard tight
binding model. Bose–Hubbard since atomic bosonic samples have been ef-
ficiently cooled first. Present techniques allow to cool efficiently fermionic
samples as well as mixtures of fermions and bosons, enabling studies of the
correspond systems in optical lattices as well.
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Bose–Hubbard system is interesting since it exhibits the so called quan-
tum phase transition [3]. It is the first experimental attempt at the observa-
tion of this transition in cold atomic setting [4] that triggered a huge interest
in similar systems. By now several different applications have been envis-
aged ranging from high Tc superconductivity [5], disordered systems [6, 7],
various spin models [8] or novel quantum magnets [9] to quantum comput-
ing settings [10]. An excellent review on the subject [11] appeared recently.
Therefore, I shall concentrate here mostly on one particular situation namely
on the most basic Bose–Hubbard model (BHM) paying a particular attention
to effects due to the presence of the disorder.

This contribution is arranged as follows. I shall briefly review how the
Bose–Hubbard model appears naturally in cold atoms studies showing how
easily one can tune basic model parameters. This flexibility allows for studies
of quantum phase transitions. In the next section I consider the effect of
disorder and the possibility of the existence of the novel phase — the Bose
glass — discussing both the theoretical models and the first experimental
attempts in that direction. Later I shall describe recent attempts to observe
Anderson localisation in shallow optical potentials as well as I shall mention
briefly possible generalisations towards mixtures of bosons and fermions.

2. Bose–Hubbard model

Consider a very cold sample of bosons placed in the periodic potential
Vlatt as well as in an additional potential Vext. The latter may be due to an
optical (or magnetic) trap holding the condensate, additional optical fields,
disorder etc. If lattice is one or two dimensional only, we assume that in
the perpendicular directions the atoms are tightly confined, i.e., there exist
a tight (harmonic) trap assuring that the perpendicular motion is restricted
to the corresponding ground state.

The Hamiltonian of the system may be expressed in the following second-
quantised form

H =

∫

d3x Ψ̂ †(x)

(

p
2

2M
+ Vlatt(x) + Vext(x)

)

Ψ̂(x)

+
1

2

∫

d3xd3x′Ψ̂ †(x)Ψ̂ †(x′)Vint(x,x′)Ψ̂(x′)Ψ̂(x) , (1)

where Ψ̂ (x) is the boson field operator. The boson–boson interaction is
taken as a contact potential Vint(x,x′) = gδ(x − x

′) For s-wave scattering
g = 4πas/M with as being the s-wave scattering length.

The Hamiltonian (1) is a starting point to two possible extreme cases.
For very weak lattices, making a standard “semi-classical” approximation by
substituting a classical wave function Ψ(x) for Ψ̂(x) we arrive at the Gross–
Pitaevskii description of the condensate in Vlatt(x)+Vext(x) potential. Such
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a situation has been discussed in numerous cases (for a review see [12]), our
interest will be mainly to review the situation in the presence of the disorder.

For the other limit, with deep lattice potential, the basis describing lo-
calisation in different lattice sites would be physically relevant. For particles
occupying the lowest band of the periodic potential only, the so called Wan-
nier functions W (x − xj) localised at sites xj are the best choice. The
Wannier functions are linear combinations of Bloch functions of the lowest
band with different quasi momenta q, φq(x)

W (x − xj) = Θ−3/2
∑

q

e−iq·xj φq(x) . (2)

Expressing Ψ̂ (x) =
∑

j=1 W (x−xj)âj where âj is an annihilation operator

for boson at j site allows to express the Hamiltonian (1) in the form

H = −
∑

i,j

Jij â
†
i âj +

1

2

∑

i,j,k,l

Uijklâ
†
i â

†
j âkâl , (3)

where the tunnelling rates

Jij = −
∫

dxW (x − xi)

(

p2

2m
+ Vlatt(x) + Vext(x)

)

W (x − xj) ,

while

Uijkl = g

∫

dxW (x − xi)W (x − xj)W (x − xk)W (x − xl)

describe the collisions. For sufficiently deep lattices, and Vext being either
slowly changing or much smaller than Vlatt additional simplifications are
possible. first of all particles interact mostly only if they are at the same
site, the Uijkl integral becomes site independent. The diagonal terms Jii

yield the energy εi at site i, which may be well approximated by Vext(xi).
In the off-diagonal terms, describing the tunnelling, the dominant Vlatt term
is kept only; We note also that, due to localisation properties of Wannier
functions, the tunnelling to nearest neighbours is dominant. The resulting
integral is site-independent and is denoted as J . In this way we arrive at
the standard Bose–Hubbard model Hamiltonian:

H = −J
∑

〈i,j〉

â†j âi +
U

2

∑

i=1

n̂i(n̂i − 1) +
∑

i=1

εin̂i , (4)

where n̂i = â†i âi.
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The interaction constant U , for given atomic species, depends weakly on
the lattice height through changing spacial extensions of Wannier functions.
On the other hand the tunnelling rate J strongly depends on the lattice
depth. Thus varying the lattice depth (changing the corresponding laser
intensity) once can modify J/U ratio in a broad range. The energies at
different sites εi may be modified in a controlled way. Typically the cloud of
atoms is kept in an additional optical or magnetic trap; then εi’s may reflect
the harmonic (or other) binding energy. Additional perturbation (e.g. the
disorder treated later on) further affects εi values.

The behaviour of the system as J/U is varied has been extensively dis-
cussed in a number of papers, see, e.g., [13]. Consider first the homogeneous
case εi = 0. For vanishing U the tunnelling dominates, particles are delo-
calized over the whole lattice realizing the so called superfluid state. The

ground state of N particles may be expressed as |ΨSF〉 ∝
∑

i â
†
i )

N |vac〉. In
the opposite limit of vanishing tunnelling J/U → 0 is is clear that due to
the interactions (the bosons repel each other) they tend to distribute them-
selves as evenly as possible among sites. If the ratio of number of particles
N to number of sites M is commensurate the so called Mott insulator state
may be formed, realising (in J = 0 limit) a Fock state at each site. A Mott
insulator is characterised by a gap in the excitation spectrum. It is easy to
convince oneself that, in J = 0 limit, the gap, ∆g is equal to U as this is the
energy cost to move one particle to already occupied site. For increasing J
the gap decreases vanishing at the point when transition to superfluid phase
occurs. Thus changing the ration of J/U one may realise the quantum phase
transition [3] between the insulator and the superfluid state. This has been
proposed for cold atoms [2] and soon realized experimentally [4, 14].

The experimental realisation of the quantum phase transition is some-
what subtle since atoms are kept in an additional trap. In effect the den-
sity of atoms changes across the trap being largest at the centre. Even in
ideal case one looses then “pure” quantum phase transition behaviour, rather
a crossover between different phases is observed [15]. Thus in some areas of
the trap one may observe (for sufficiently deep optical lattice) a characteris-
tic integer filling of sites, while in the transition areas superfluid phase exists.
This has been also exemplified in dynamical (mean field) simulations [16] as
shown in Fig. 1.

The dynamical mean field analysis of (4) is based on the time-dependent
variational principle [17]. The dynamical equations are obtained minimising

〈G(t)| i~ ∂

∂t
− H(t) + µN̂ |G(t)〉 , (5)

with H(t) being the time dependent Hamiltonian. This time dependence is
implicit in the dependence of U, J as well as εi in (4) on the lattice depth
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Fig. 1. Atomic density (on-site filling factor) in a trap as simulated for realistic

experimental conditions of [4] experiment. Panel (a) shows the dynamical mean

field final state for experimental conditions, panel (b) the situation for a more

optimal lattice turn on, while panel (c) represents the mean field ground state for

a deep lattice. For further discussion see text.

that is changed in a controlled way. The chemical potential µ becomes also
time dependent when system parameters are varied. |G(t)〉, the variational
wave function takes a standard Gutzwiller-type form

|G〉 =

M
∏

i=1

(

nm
∑

n=0

f (i)
n |n〉i

)

. (6)

with f
(i)
n (t) now being time-dependent. One thus neglects all possible entan-

glement between different M sites of the lattice; nm is a maximal bosonic
occupation at a given site. The very same approach has been successfully
applied recently to the formation of molecules [17, 18], the treatment of the
disordered optical lattices [6] as well as for determining the phase diagram
in Bose–Fermi mixtures [19].

The minimisation of (5) yields the set of first order differential equations

for f
(i)
n (t):

i
d

dt
f (i)

n =

[

U

2
n(n−1)+n(εi−µ)

]

f (i)
n −J

[

Φ⋆
i

√
n + 1f

(i)
n+1+Φi

√
nf

(i)
n−1

]

, (7)

where Φi =
∑

〈j〉〈G(t)|aj |G(t)〉 (the sum, as indicated by subscript in brack-

ets is over the nearest neighbours only). The nice feature of the evolution

resulting from equations (7) is that the average number of particles N = 〈N̂〉
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is an exact constant of the motion [17]. This large set of equations is solved
numerically to mimic as precisely as possible the experiment [4], for details
see [16].

The simulations suggests that at the original conditions of the experiment
[4] significant excitations occurred and insulator phase has been reached in
part of the atomic sample only. For slightly slower lattice turn on, however,
the insulator phase is reached in a significant part of the trap, as shown
in the panel (b). It is worth stressing that the simulations (see [16] for all
the details) have been performed within the mean field approximation only,
exact dynamical calculations for the conditions of the experiment are im-
possible. Importantly also, later experiments [14] used longer times (and
different geometries) ensuring the formation of the Mott insulator from the
superfluid initial state. It seems now, therefore, to be a quite accepted fact
that experiments [4, 14] are clear demonstrations of quantum phase transi-
tions in necessarily finite experimental systems.

The additional experimental evidence for the existence of the insulator
Mott phase is the resonance at energy U (and its multiplicities) observed in
absorption studies of the condensate in the deep lattice [4]. Such a resonance
is a clear indicator of the importance of the interaction energy term in the
Hamiltonian (4) and of the presence of the gap (with size U) in the excitation
spectrum, the gap expected for the Mott insulator.

3. The effect of disorder, strong interactions

The presence of disorder may strongly affect the behaviour of atoms in
optical lattices. In the Bose–Hubbard model the problem was studied in
detail by Fisher et al. [13]. The existence of a novel insulating phase, the
Bose glass has been postulated. The transition from Mott insulator to the
superfluid was argued to occur only via this third phase. The Bose glass, as
opposed to Mott insulator, has no gap in the excitation spectrum and has
a finite compressibility. There is no superfluid fraction — the corresponding
wave function is localised.

Assume a disorder leads to some distribution of offset energies εi’s, say,
εi is randomly distributed in [−∆/2,∆/2] interval. Then, if the gap is ∆g

without the disorder, it may decrease to ∆g−∆. Increasing J/U we decrease
∆g, reaching the limiting situation of ∆g = ∆ when the gap disappears. It is
argued [13] that this limit gives the offset for the Bose glass phase.

Can this phase be realized in the cold atom setting? This relies on the
possibility to create an appropriate disorder in the optical lattice. At least
two possibilities exist [6, 20]. One can add an additional random optical
potential using e.g. speckle radiation imagined on the atomic sample. The
second possibility is to add an additional weak optical lattice with a different
period. If corresponding wavelengths are incommensurate, a quasi periodic
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variation of εi along lattice sites is generated. This is not a truly random
solution but one should keep in mind that the typical atomic samples are
quite limited in size, to several tens of the effective lattice sites in a given
direction [4, 14]. For such a sample both a truly random and a sufficiently
quasi periodic sequence should lead to similar observations.

We have verified that this is indeed the case making a dynamical mean
field simulation in a two-dimensional lattice [6] following the procedure de-
scribed above, Eq. (7). The question remains how to detect the appear-
ance of the Bose glass phase. In our numerical experiment two stages were
present. First the lattice was adiabatically turned on for incommensurate

filling. In fact we assumed that the ratio of number of atoms N to number
of sites M to be fixed at η = N/M = 0.75. The system remains then in
the superfluid state, but the condensate fraction (i.e. the largest eigenvalue
of the single particle density matrix) decreases to about 30% (see the inset
in Fig. 2) from the original close to unity value. This is a manifestation of
entering the strong interaction regime, where Mott insulator is expected at
integer filling. In fact we reach U/J of the order of 70 for the considered
case of Na atoms.
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Fig. 2. Condensate (superfluid) fraction shown as a solid (dashed) line as a function

of time when the disorder in the lattice is dynamically turned on. The disorder is

due to incommensurate second lattice with the ratio of the primary and secondary

lattice q = 1.338. The inset shows the first stage of the process — the turn on of

the primary lattice. The lattice has 40 × 40 sites.

In the second state a quite weak secondary laser beams are turned on.
The ratio of primary to secondary wavelength q = 1.338 (corresponding to
say nd:YAG and Ti:sapphire lasers) is incommensurate. The secondary laser
is quite weak with the resulting optical potential being a weak perturbation
only of the effect due to the primary beams. The secondary beams are turned
on very slowly to assure that the system remains adiabatically in the ground
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state. Still the condensate fraction rapidly drops to almost a zero value (it
remains at 2% level due to the finite size as well as mean field approximate
calculations). Even a more dramatic is a drop in the so called superfluid
fraction, see the dashed line in Fig. 2. The latter can be determined by
studying the sensitivity of the system to the change of boundary conditions
[6, 21]. Due to the presence of the disorder superfluidity is lost and the
system lands in a localised, insulating state — the Bose glass phase. Similar
behaviour is observed for rapidly changing random speckle potential [6].

The suggestion of [6] has been taken up experimentally [22]. As usual, the
experimental realization differs significantly. In particular the experiment is
performed with a set of one-dimensional tubes, the atoms are confined by
very strong beams in the perpendicular direction. Within each tube the weak
secondary beam is superimposed on top of the strong one creating the lattice,
as described above. Since there is no direct way to measure the condensate
(or superfluid) fraction, the experiment measures the absorption profiles.
Recall that the excitation spectra in the Mott phase exhibit a resonant
structures which may be associated with the presence of the gap. When the
disorder is turned on, the excitation spectra change. first, the corresponding
peaks broaden, later for a sufficient disorder, they disappear altogether.
While the authors do not consider their results as conclusive, it seems that
their experiment leads to formation of Bose glass — the state of matter not
observed in other than cold atoms arrangement. The remaining challenging
problem is to find new characteristics which will enable an unambiguous
identification of the state of atoms.

4. The effect of disorder, weak interactions

Finally let us briefly mention the case of a shallow optical lattice po-
tential in the presence of the disorder. As mentioned in the Introduction,
in that case we have to consider an effective Gross–Pitaevski description of
the condensate. This case is not tractable via a tight binding model, so we
mention here very shortly the current status of disorder studies.

With no interactions, at least in the one-dimensional case, the tight-
binding model with random on-site energies is equivalent to the Ander-
son model. As such we expect the ground state to be exponentially lo-
calised. Similar situation is expected by continuity for weak interactions.
Yet three independent experiments performed in Florence [23], Orsay [24]
and Hanover [25] have brought surprising, at first glance, results. In the
presence of a random speckle-like light induced potential the fragmentation
of the condensate was observed. However, the partial localisation observed
was classical in nature. The results could be understood via localisation of
the condensate at the bottoms of potential wells. Similarly, the inhibition of
transport [24] could be explained as due to a purely classical, “under the bar-
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rier” reflection. A detailed analysis of experimental conditions [26] revealed
that two effects are vital for interpreting the results. Firstly, the random
speckle-like potential, due to its origin, is slowly varying as compared e.g.,
to the condensate healing length [24]. It thus provides a smooth modulation
of the potential.

The other important effect is due to the interactions. The effective po-
tential in the nonlinear Gross–Pitaevskii equation takes a form

Veff(x) =
x2

2
+ V0 cos2(kx) + Vdis(x) + gN |φ(x)|2 , (8)

where the first term describes the harmonic trap, the condensate is kept in,
the second the periodic lattice, the third the disorder, while the last term is
proportional to interaction strength g, compare (1) as well as to the density
of the condensate (we assume φ(x) to be square normalised to unity so N ,
the number of atoms appears explicitly in the effective potential). Observe
that (at least for most interesting repulsive interactions, i.e. g positive) local
minima of V0 cos2(kx)+Vdis(x) where the wavefunction supposedly localizes
are “filled in” by the nonlinear term gN |φ(x)|2 smoothing the potential. Such
a screening by nonlinearity is, in fact, a well known effect [27].

In effect, as discussed in detail elsewhere [26], the Anderson type of
localisation may be possibly observed in quite weakly interacting systems
only. To realize the feasible experimental setting one can either modify
the interactions via the well known Feshbach resonance mechanism [28,29],
or increase significantly the size of the atomic cloud (by making the trap
holding the atoms much weaker). Work in this direction is in progress in
Hanover.

The question remains whether the nonlinear screening effect discussed
above can not be turned into an advantage by considering attractive interac-
tions (g negative). Then indeed the localisation will persist in the presence
of the interactions. Yet, it is not due to disorder, it appears also in its ab-
sence — this is the so called bright soliton (a localised solution of nonlinear
Gross–Pitaevskii equation). It survives in the presence of the disorder [30]
but clearly the localisation mechanism in this case is not Anderson-like.

5. Mixtures of bosons and fermions

Atoms appear as bosons and fermions so a natural possibility seems
to trap fermions or mixture of fermions and bosons. Spin-polarized (such
polarized atoms are typically trapped in magneto–optical traps) fermions do
not interact via s-wave collisions at low temperature due to Pauli exclusion
principle but they can be cooled effectively by collisions with bosons [31].
In effect it is quite realistic to consider a mixture of bosons and fermions in
a common trap or, e.g., in an optical lattice. The latter, for a sufficiently
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deep lattice, leads to a convenient description of the system in terms of
a Fermi–Bose–Hubbard model [35]

HBFH = −JB

∑

〈ij〉

a†iaj−JF

∑

〈ij〉

f †
i fj +

∑

i

[

1

2
Uni(ni−1)−µBni−µFmi

]

+ V
∑

i

nimi , (9)

where, f †
i , fj are fermionic creation and annihilation operators, mi = f †

i fi

while V denotes the interaction between fermions and bosons and µB (µF) is
the chemical potential for bosons (fermions), similarly JB (JF) denotes the
corresponding tunnelling rates. To minimise the number of parameters of the
model, we assume JB = JF = J . Even in the strong coupling limit J ≪ U, V
the phase diagram of the system may be quite reach, in particular, if boson–
fermion interaction is attractive (repulsive) composite fermions composed of
a fermion and a boson (correspondingly, a bosonic hole) may be formed. The
subject, also in the presence of the disorder, has been extensively reviewed
recently [7, 36, 37] so I refer the interested reader to these sources. It is
sufficient to mention that disordered mixtures allow for simulation of spin
glass physics, as well as quantum percolation effects.

6. Summary

I have reviewed briefly how cold atoms placed in an optical lattice may
serve as a versatile tool to mimic standard condensed matter models. This
may open a novel experimental field of controlled studies of such models
since most of the parameters may be modified at will in the cold atoms
settings. In particular, one may attempt novel studies of disorder with
a quite different perspective. Rather than being interested in properties
“averaged over disorder”, cold atoms allow for a repeated controlled studies
of single realizations of the disorder. This opens up new and fascinating
possibilities.
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