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THREE DIMENSIONAL BALL AND CHAIN PROBLEM

BY THE HYPERBOLIC RANDOM WALK∗
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A first passage time distribution (FPTD) based on 3-D hyperbolic dif-
fusion addressed to the “ball and chain” model, is presented. The resulting
shape of FPTD with respect to time is shown. The possibility for compar-
ison with experimental data is also provided.

PACS numbers: 67.16.Uv, 87.15.Vv

1. Introduction

The ball and chain problem refers to inactivation process of a potassium
channel [1]. The potassium channel consists of a pore formed by four peptide
units [2]. At the N-ends of each unit there are four peptide chains that end
with hydrophobic sequence which forms a sort of a “ball” [3].

In the open potassium channel the balls can freely move in the surround-
ing, and it may happen that they hit the channels pore, binding to it and
blocking the ion conduction. This is called an N-type inactivation, or ball
and chain inactivation [3].
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Natural approach to modelling of this sort of process involves diffusion
as the main kinetic mechanism associated with the motion of the ball. This
corresponds, on a molecular level to a random walk picture of the moving ball
(Brownian particle) [4–6]. (Extensions include fractional diffusion model-
ling [7]).

When taking into account constraints to the motion in the ball and
chain system together with interaction of charged amino acid groups, and
ionic gradients, it can be expected that the motion of a ball will reveal some
correlation characterized, in average, by time τ . This leads to a correlated
random walk problem, and in result, among other effects, to the hyperbolic
diffusion equation for the probability density [8–10], i.e.

∂p

∂t
+ τ

∂2p

∂t2
= D∇2p , (1)

where τ is the correlation time and D, the diffusion constant. It can be
easily seen, that going with τ to zero, we can recover a simple parabolic
diffusion equation. This idea is supported by literature [10], where through
Sirovich’s method we can see that long time behavior of densities, obeying
equation (1), is diffusive.

The nature of correlations can also be analyzed based on the self simi-
larity of ionic current. The ball and chain must receive inertial correlations
of order m/γ, where γ is the damping coefficient and m the mass of ball or
chain. Due to the strength of the local electrostatic fields the “native” mass
becomes an “effective” one, presumably, orders of magnitude larger. As it
was shown elsewhere [11], ionic current shows self similarity in time, i.e. there
are bursts within bursts within bursts of openings and closings. It gives an
opportunity to explain the “local character” of an effective correlation time
of the randomly walking ball. Closer to the channel’s throat smaller the
ratio of average ball distance from the throat to the ball’s fluctuations, and
smaller the “effective mass” of a ball.

In this paper we investigate the ball and chain problem and formulate
the initial and boundary conditions for the diffusion. We also justify the pos-
sibility of an analysis of 1-D diffusion modelling. We preform a correlated
random walk simulation for the hyperbolic diffusion problem, and show the
possibility of obtaining the FPTD curve under such conditions. We also
inspect its properties, and search for the possible distinguishing effects com-
pared to a simple parabolic diffusion model (i.e. the influence of correlation
time on the shape of the curve).
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2. Posing the ball and chain problem

The ball and chain problem can be formulated in terms of a transport
operator — L̂:

L̂p(~r, t) = 0 . (2)

The operator may be of various form. For example, it can be a simple
diffusion operator

L̂ =
∂

∂t
− D∇2 (3)

or, it can be the damped wave (hyperbolic diffusion) operator

L̂ =
∂

∂t
+ τ

∂2

∂t2
− D∇2 . (4)

The operator acts in a domain

|r| ∈ (0, rmax) (5)

with initial and boundary conditions

p(~r, 0) = α(~r) , (6)

∂p(~r, 0)

∂t
= β(~r) , (7)

fB

(

p(0, t),
∂2p(0, t)

∂x2
,
∂2p(0, x)

∂t2

)

= 0 , (8)

Flux(~rmax, t) = 0 . (9)

The initial conditions are given in terms of some functions. α(~r) and
β(~r) which will be determined in the next section.

The first boundary condition (i.e. Eq. (8)) describes the absorbing bound-
ary at the channels pore end. The second condition (i.e. Eq. (9)) represents
the reflection of the ball when it elongates the chain to maximum value. The
absorbing condition is not specified simply as p(0, t) = 0 (which is true for
simple diffusion) for it leads in hyperbolic diffusion problem to a negative
reflected wave. In hyperbolic diffusion, the condition can be deduced from
the correlated random walk framework to be [12]

∂2p(0, t)

∂t2
=

(

D

τ

)

2 ∂2p(0, t)

∂x2
. (10)
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3. Specifying initial conditions

The process of specifying the initial data is of crucial importance (see
Fig. 1, Fig. 2).

If we assume that no point in the space can be distinguished, then each
position in the volume of half of a sphere V = 2/3πr3

max (where rmax is the
length of the chain) is equally possible. If so, then the probability to find
the ball at the radius r ∈ (0, r) equals

F (r) =
2/3πr3

2/3πr3
max

=
r3

r3
max

, (11)

i.e. the (cumulative) distribution function, that changes with r from 0 to 1,
as r goes from 0 to rmax. As we can see the probability density function
f = dF/dr is simply a parabola. Thus, our initial distribution α(~r) is also
a parabola, of the form

α(r) = f(r) =
3r2

r3
max

(12)

which can be seen in Fig. 2.

r

rmax

Fig. 1. The volumes associated with various distances from the channels end.

The initial condition β(~r) should be constructed from α(~r), after taking
into account that each initial condition generates a spherical wave, propa-
gating with constant velocity. Thus, the new value of density after t + dt
will be equal to the average value of densities at radius |r1| = vdt from
the considered point. Estimating this value by averaging a square around a
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Fig. 2. The histogram of the initial distribution for the ball and chain problem

when uniform distribution of initial density in the space is assumed. Number of

particles N = 106. r stands for the radius from the pore center.

specified point, we see that the contributions along the circumference have
the same value and we can reduce the problem to average contributions from
α(r − vdt) and α(r + vdt) which gives for t → 0:

p(r, t) = 1

2
[α(r − vt) + α(r + vt)] , (13)

β =
dp(r, 0)

dt
= −v

dα

dr
+ v

dα

dr
= 0 . (14)

This is not surprising and states that for short times nothing happens to
the initial distribution (which additionally is quite uniform in the considered
case).

4. On the probabilities to move to various values of radius r

If we know the relative probabilities of increasing and decreasing the dis-
tance of a ball from the channels pore, we would be able to formulate the
problem for simple diffusion of it in terms of a random walk in r coordi-
nate (the angular position of spherical coordinates does not matter for the
considerations of channel blocking).

Let us take a look at the situation in Fig. 3. We can see that if a particle
is found at some radius r, and performs a jump in some direction (where
no direction is distinguished), then the probability to jump toward channel
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Fig. 3. The possibility of bias in the random walk due to unequal probabilities of

going toward and outward of channels pore.

pore (the dashed area) is smaller than that of jumping outward. This is
directly connected to the volume dV = 2πr2dr associated to both sides of
the sphere at radius r (the regions separated by a dashed line in Fig. 3).
Because of that, a ball jumping from r has larger number of destinations at
r + dr than at r − dr.

Comparing two adjacent volumes, separated by dr, we see that dV (r +
dr) − dV (r) = 4π(r + dr)2dr − 4πr2dr = 8πrdr2 + 4πdr3. Thus, having
the maximum value for r = rmax the bias is limited to the order of dr2. In
diffusive modelling, such bias does not influence the dynamics. Only terms
of order dr could do this [10, 13, 14].

These considerations lead to a conclusion that the ball and chain problem
can be modeled by an unbiased diffusion in r direction with equal probabil-
ities for increasing and decreasing the radius. This is an important result.

5. Hyperbolic equation

If we allow the ball to wander in the chosen direction for a longer time
than dt, for example for time τ , we end up with hyperbolic diffusion equation
(see Eq. (1)).

The behavior of the solutions to this equation for short and long time
regimes is known from the literature [10]. For short times the decorrelation
effects are not visible and the solution behaves like a traveling wave (ballistic
motion). Then, after some transient time, the correlation in the motion is
getting lost and the solution turns into the diffusive behavior [10].
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The ballistic motion out of each point of initial condition (the initial
condition is the probability to find the ball in a given point of space when
the process starts) corresponds to generation of a spherical wave. If the
wave starts at large radius r from the channel pore, the probability to hit
the pore is proportional to the weighted average

p ∼

π
∫

0

A sin α

2πr2
cos αdα ∼

A

2πr2
, (15)

where A is the sub-area of the sphere of radius r, occupied by the pore and
α is the angle between channel’s wall and the radius r. cos α is the weight,
which scales like the perimeter of the circle that can face the pore at radius
r and angle α from the pore.

If r is sufficiently large, parameter A can be viewed constant, since the
piece of sphere that is expanded on it tends to be flat (see Fig. 4). Thus,
the probability of being directed to the pore center, depending on radius, is
chosen to be

p ∼
A

2πr2
. (16)

This approximation becomes disturbed in the near of the pore where it
is difficult to form a sphere around initial condition that would not reach too
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Fig. 4. The directions, that allow to end the travel of the ball by closing the pore.

The dashed area is the area occupied by the pore, the sphere center is the initial

condition of the ball, and the sphere area represents the possible initial directions

of motion. The cone represents directions, ending in the pore.
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deep into the pore and besides the assumption that area A lies on the sphere
is obviously violated. Additionally the initial condition for the density in a
small distance r from the pore is not parabolic (because the pore is not a
point structure).

6. The first passage time distribution for short times-estimation

and numerical verification

For short times we consider the density front to move as a traveling
wave. The amount of density, that gets into the channel pore at time t
equals the fraction of the density initially placed at a distance vt from the
channel pore (v represents the density front velocity), which traveled in the
proper direction. This means that it is proportional to the product of two
probabilities (12), (16):

FPTD(t) ∼ (vt)2
A

2π(vt)2
. (17)

One should note that this equation is limited by construction to the time
vt < rmax (because for higher radius the density of initial condition does not
grow anymore and reflections enter to the considerations).
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Fig. 5. The flatness of the FPT histogram curve shown by enlarging the correlation

time to τ = 100, where pore radius has 10 length units, the space step and time

step equals 1 and, number of test particles n = 106, number of simulation repeats

nr = 15, maximum distance of the ball from the pore Rmax = 100.
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The prediction shows that the first passage time distribution should be
a flat line. The numerical calculations confirm this for a wide range of times
after the experiment beginning. This can be seen in Fig. 5, where large
correlation time was used. On the other hand on Fig. 6 we can see the
influence of correlation time on the shape of the curve.
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Fig. 6. The histogram done in the same circumstances as in Fig. 5 with the

exception of using τ = 10 instead of τ = 100. The chart starts at the same value

and then drops down after correlation time.

This shape is not expected in biological charts. In biology we would
expect first passage time curve to grow from zero to some maximum, and
then decay slowly [12].

The decay is obviously also included in the hyperbolic model (i.e. in the
random walk simulation in the end all of the test particles hit the pore and
stop their motion (Fig. 7)), but the initial lack of probability for short times
in first passage time distribution is not present in hyperbolic modelling. Does
this mean the model is useless? No, because we can construct the experiment
in such way that we obtain the desired shape of the FPTD curve.

To achieve this, we need to assume that the initial condition forbids the
ball to stay in the near of the pore. This could be expected if the recovery
from inactivation ejects the ball from the pore to some distance (for example
due to tensions in the chain or electrostatic interactions; the mechanism is
still not fully understood [17]). Then obviously, because the density from
initial condition requires some time to get to the pore, we obtain an expected
shape of FPTD curve (Fig. 8).
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Fig. 7. The decay of FPT histogram curve forced by enlarging the pore radius to

50 units in the simulation, where space step and time step equals 1 and τ = 1.5,

number of test particles n = 106, number of simulation repeats nr = 2, the repulsion

from the pore in initial condition R = 2, maximum distance of the ball from the

pore Rmax = 100.
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Fig. 8. A FPT histogram curve, that is similar to biological curves. The pore radius

in the simulation was set to 10 units, where space step and time step equals 1 and

τ = 1.5, number of test particles n = 106, number of simulation repeats nr = 15,

the repulsion from the pore in initial condition equals R = 2, maximum distance

of the ball from the pore Rmax = 100.
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7. The possible dependence of correlation time

on the length of the chain

The correlation time τ can possibly depend on the length of the chain
inspected in the problem. A schematic illustration of this idea is put in
Fig. 9. We can see that depending on the type of motion in the area of the
chain residues, the undisturbed travel can take distances that scale like n
or n2 with the length of the chain. Because the velocity of motion is fixed
in this model, we can say that the freely traveled distance L ∼ vτ ∼ τ , and
hence we can get the scaling of τ for the mentioned types of motion.

L1

L2

A)

B)

R0 α0

R0
α0

Fig. 9. The scaling of freely traveled distance with the length of the chain. In case

(A) the scaling is proportional to L ∼ (nα0)(nR0), and in case (B) it is proportional

to L ∼ nR0.

Because the total available number of possible modes of motion covers
both cases, we cannot say that τ in general scales like n2 or n. The scaling
would be expected to be of some intermediate type, i.e. a fractal scaling.

8. Concluding remarks

We have investigated the ball and chain problem. We have formulated
the initial and boundary values for the hyperbolic and parabolic diffusion
models. We have shown that diffusion analysis can be preformed in one di-
mension. We have also shown that it is possible to obtain a FPTD curve from
the hyperbolic diffusion framework. The framework predicts some properties
for this type of model, i.e. that the ball should be ejected from the binding
site in the recovery from inactivation, and that for the short time regime the
distribution is expected to be flat.



1716 P. Borys, Z.J. Grzywna, L.S. Liebovitch

After a longer time period, the regular diffusive regime enters, and the
scaling obeys the diffusive FPT for long times, exp(−t/τ1) where τ1 ∼ n2,
where n is the number of residues in the chain [4, 10, 15].

Interesting continuation of the work presented in this paper would be to
compare the predictions with charts, found in biophysical measurements. In
such measurements (whole cell voltage clamp), we usually have a chart of
current, passing through potassium channels versus time [16]. This current is
proportional to the number of open channels, and therefore to the probability
that a channel is open at given time.

This chart has therefore the interpretation of survival probability that
a channel remains open at time t. To obtain FPT distribution, we need
to notice that this probability is a cumulative distribution of probability of
closing the channel, i.e.

Psurv = 1 −

t
∫

0

FPTD(τ)dτ . (18)

Using this equation it is possible to extract the FPTD from measure-
ments, and to decide whether it is driven by a hyperbolic diffusion process
(i.e. to compare the flatness of the curve in the region of the maximum and
in the beginning of the tail-recall Fig. 5 and Fig. 6).
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