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NOISE-INDUCED SYNCHRONIZATION
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We study the noise-induced synchronization in a system of particles
moving in Fahy–Hamann potential [S. Fahy, D.R. Hamann,Phys. Rev. Lett.
69, 761 (1992)] and subjected to generalized Langevin forces. We investi-
gate the synchronization dependence on system’s parameters and on mem-
ory range. The results show that while in general memory acts against
synchronization, for intermediate memory ranges the opposite effect can
be observed. Generally the synchronization transition is found to depend
on memory range, temperature and dissipation in the system.
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1. Introduction

Chaotic systems shows extreme sensitivity to even a minor perturbation
of initial conditions. Two trajectories very close to each other usually di-
verge exponentially in time, which makes long-time evolution unpredictable.
That is, identical systems evolving with different initial conditions will not
synchronize their trajectories. The situation may change, however, when
the systems get coupled e.g. by a common signal. Even a random resetting
of velocities in an ensemble of particles with different initial conditions can
force synchronization, as shown by Fahy and Hamann (FH) in 1992 [1].

Since then coherence of dynamical processes has become an active field
of research with examples found in physical, biological, chemical and social
systems [2–9]. At least four types of synchronization scenarios have been
identified [10–13] of which the synchronization of identical systems coupled
by a common noise has received much attention due to its relative simplicity
and importance [13, 14].
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Usually we describe chaotic systems by Markovian-type of equations,
but realistic time evolution, due to collective effects is, in general, non-
Markovian, which inevitably requires memory (time-delayed interactions) to
be taken into account [15–18]. Systematic studies of isolated, time-delayed
interactions were initialized by Schuster and Wagner [19]. They considered
two coupled phase oscillators and found multi-stability of synchronized so-
lutions. Since then, delayed interactions have been analyzed in different
contexts [20–23]. The most interesting recent development in this regard
are studies showing (a) enhancement of neural synchrony in a network of
coupled oscillators involving time delays [21] and (b) demonstration of syn-
chronization in an ensemble of coupled, chaotic logistic maps with random
delay times [23].

In this paper we demonstrate a constructive influence of memory on the
noise-induced synchronization. To this end we consider generalized Langevin
dynamics of Fahy–Hamann particles, for which the limit of vanishing mem-
ory is well understood.

2. Model

We explore influence of memory on the noise-induced synchronization
by generalizing the Fahy–Hamann studies [1]. Our system comprises of two
identical, independent particles in a two dimensional potential well given by

V (x1, x2) =
sin 2πx1

2πx1
+

sin 2πx2

2πx2
+

(x2
1 + x2

2)
2

16π2
, (1)

which is sketched in Fig. 1. The motion of the i-th particle (i = 1, 2) is
governed by the generalized Langevin equation:

Fig. 1. Fahy–Hamann potential.
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∫

Γ (t − t′) ẋi

α(t′) dt′ + ξ(t) , (2)

where m is the particle’s mass, γ is the friction constant, also playing
the role of memory intensity parameter, T is the absolute temperature
and kB is the Boltzmann constant. The particles evolve subject to dif-
ferent initial conditions. They are coupled by the common noise ξ, which
is a Γ -correlated stochastic force with zero mean and correlations obeying
fluctuation-dissipation theorem

〈〈 ξ(t)ξ(t′) 〉〉 = 2mγkBT Γ (t − t′) . (3)

In what follows we restrict ourselves to the exponentially correlated noise
by choosing Γ (t − t′) = e−λ(t−t′), where 1/λ is the memory range. Double
angular brackets denote averaging over a noise realization.

3. Simulations

We analyze trajectories of the particles by integrating numerically the
equations of motion (2) with the help of stochastic version of the Euler
algorithm. Discretization of the equations (2) entails re-scaling the noise

strength by a factor 1/
√

∆t, where ∆t is the time step. The exponentially
correlated noise is generated from uniformly distributed random numbers
through Ornstein–Uhlenbeck process. Finally, the integral present in (2) is
discretized according the scheme

t
∫

dt′ ẋi

α(t′) exp [−λ(t − t′)] =
N

∑

k=0

ẋi

α(t − k∆t) exp (−λk∆t) . (4)

The number N of stored past velocities was chosen equal to

N =

⌊− ln p

λ∆t

⌋

, (5)

where p = 10−5 is the assumed accuracy of the approximation used in eval-
uating integral (4). In the limit of λ → ∞ the dynamics becomes reduced
to the ordinary Langevin dynamics without memory (N = 0).

In simulations we determined the maximal Lyapunov exponent, Λ, as
function of memory range (1/λ) and γ. Λ was estimated from relative
changes in the distance between the two initially nearby trajectories

Λ =

〈

1

t − t0
ln

d(t)

d(t0)

〉

, (6)
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where d stands for distance at time t and 〈. . .〉 is the averaging over trajec-
tory. We used a natural system of units provided by the potential parame-
ters: energy εu = V (0, 0)− Vmin ≈ 2.41, time tu =

√
3, measuring curvature

of the potential at origin and length lu = 1 giving the period of the oscillating
part of the potential. Also we set the particle’s mass to m = 1.

Simulations were carried out according to the following scheme: first of
all we selected initial conditions for a particle at random following Boltzmann
distribution at a given temperature T . Then, the particle was thermalized
for about t = 500 time steps. Initial position of the second particle was
chosen at random, close to the thermalized position of the first particle. The
distance in positions between the particles did not exceed 10−6 at start, and
in velocities was limited by 106 tu. Averaging procedure was performed along
a trajectory over 103 subsequent time steps for 104 different trajectories.
Further increase in the number of the time steps and the trajectories did
not lead to systematic changes in Λ.

4. Results

In the absence of memory the system was originally studied by Fahy
and Hamann [1] using Andersen thermostat. The results unambiguously
showed that trajectories were exponentially convergent to a common, mas-
ter trajectory after a transient period. The same phenomenon has been
reported for an ordinary Langevin dynamics (without memory) applied to
a one-dimensional Lennard–Jones chain [27]. Recently Uberuaga and co-
workers [9] re-analyzed the synchronization in Andersen and Langevin ther-
mostats and suggested that this synchronization should occur for a wide
range of potentials and temperatures. Their observation agree with our un-
derstanding of the noise-induced synchronization as being an averaged effect
of contraction and expansion of the distances between nearby trajectories
during their time evolution [14, 25, 27, 28]. The questions arise as whether
Andersen thermostat and Langevin dynamics lead to the same predictions
for our model and how synchronization is affected by the range of memory.

A typical simulation for the memoryless system shows, as expected, syn-
chronization of the trajectories (Λ < 0, Fig. 2). Generally the distance
between two trajectories decays exponentially after the transient period un-
til fluctuations of the order of numerical precision are reached. Inset shows
the distance behavior at short times. The oscillations arise as a result of
motion around local potential minimum. A systematic study shows that Λ
changes with temperature and friction constant γ, as shown in Fig. 3. The
results are summarized in Fig. 4, which shows regions of synchronization
(Λ < 0) and chaos (Λ > 0) in (temperature, γ) plane.
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Fig. 2. Time evolution of the distance between two trajectories. System parameters
are: T = 0.1, λ → ∞ and γ = 1.0. Inset shows the evolution at short times.
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Fig. 3. Maximal Lyapunov exponent Λ versus temperature T at different friction
constant γ for memoryless system (λ → ∞).
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Fig. 4. Regions of positive and negative maximal Lyapunov exponent for Fahy–
Hamann system without memory (λ → ∞).
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Generally synchronization is observed for large frictions, which stays in
agreement with our earlier results for a different system [27]. Temperature
dependence shows that Λ reaches it’s maximum at mid-temperature range.
In this regime particle trajectories easily penetrate local maxima of the po-
tential, whereas at low temperatures they stay for a long time in local min-
ima. On the other hand, for high temperatures the local harmonic structure
can be neglected in comparison with the harmonic (x2

1 + x2
2)

2 boundaries.
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Fig. 5. Maximal Lyapunov exponent Λ versus temperature T for different friction
constant γ and short memory (1/λ = 0.01).

Finally, in Fig. 5 we show maximal Lyapunov exponent against tempera-
ture for different values of friction constant and for memory range 1/λ = 0.01
(N = 5). It is clearly seen that for this memory range no synchroniza-
tion occurs. A simple intuitive explanation would be that memory adds
additional degrees of freedom, which should make harder for the system to
synchronize. Unexpectedly this argumentation fails for longer memory. Cal-
culations of Λ as function of N ∼ 1/λ show at least three regimes, Fig. 6.
In the first regime, corresponding to a short memory range, we observe
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Fig. 6. Maximal Lyapunov exponent Λ against memory 1/λ ≤ 0.2 (N ≤ 100) for
different temperatures with friction constants γ = 1.0.
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de-synchronization of the system by memory. However, after reaching max-
imum Λ drops down and for intermediate memory range synchronization is
considerably enhanced. The strongest synchronization conditions are met
for 1/λ ≈ 0.14, where Λ approaches minimum. Interestingly, the positions
of the extremes are practically independent on γ. Further details are given
elsewhere [30].

5. Summary

Summarizing, our results show a possibility of having the constructive
influence of memory on the noise-induced synchronization. To our knowl-
edge the only other observation pointing to the same conclusion is an en-
hancement of neural synchrony in the Hindmarsh–Rose neural network with
time-delays [21]. Please note that the effect is quite counterintuitive for,
in the first place, we would expect that memory by introducing extra di-
mensions [29] should act in just the opposite way, i.e. make synchronization
more difficult [22,23]. Though the proposed models are relatively simple, our
observations to date suggest that this enhancement of synchrony by memory
is a general phenomenon, occurring for a wide class of memory profiles.
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