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We present a simple model of an evolving directed network based on lo-
cal rules. It leads to a complex network with the properties of real systems,
like scale-free in- and out-degree distributions and a hierarchical structure.
Each node is characterised by intrinsic variable S and the number of out-
going kout and incoming kin links. As a result of network evolution the
number of nodes and links (as well as their location) changes in time. For
critical values of control parameters there is a transition to a scale-free net-
work. Our model also reproduces other nontrivial properties of real WWW
network, e.g. a large clustering coefficient and weak correlations between
the age of a node and its connectivity.

PACS numbers: 89.75.–k, 89.75.Da, 87.23.Ge

1. Introduction

In recent years it has been found that the structure of different biological,
technical, economical and social systems has the form of a complex network
[1,2]. The high value of the clustering coefficient and scale-free distribution
of connectivity are some of the common properties of those networks [2, 3].
Their evolution is successfully modelled using different approaches. However,
in many models an undirected network is used even if a real network is
directed [4] (e.g. models of the World Wide Web network [5, 6]).

Different approaches to a generation of graphs with desirable proper-
ties, e.g. a degree distribution or correlations between node connectiv-
ity, have been presented [7, 8]. Most of them assume that a new connec-
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tion can be created between each pair of nodes with a certain probability
(e.g. proportional to node connectivity [9]), but some models are based on
local (i.e. involving a node and its neighbours) rules [10–12].

Taking into account that real networks are often very large, the assump-
tion that a node has knowledge of its local neighbourhood only is much
more realistic than the assumption that a node has knowledge of the whole
network. Such an assumption is used in models of preferential attachment,
where the connectivity of all nodes in the network is known to a node the
moment a new connection is created. Hence, many papers describe routing
strategies based on local information [13].

In our model we investigate the evolution of a directed network with local
rules and intrinsic variables. Each node is described by intrinsic variable S,
drawn from uniform distribution in the range (0; 1) [6, 14]. This value does
not change during time evolution of the system. In time t = 0 we create
a set of m fully connected nodes. Thus, each node has m− 1 outgoing links
and m − 1 incoming links.

In one time step of simulation we add a new node with randomly gener-
ated number of outgoing links n ∈ (0;m] pointing to randomly chosen nodes
(multiple connections are not allowed). In real growing networks nodes can
also be removed, thus in each time step we remove randomly chosen node
and all its outgoing links from the network (incoming links are rewired to
randomly chosen nodes).

The process of creating new connections between nodes is observed in
many real networks, e.g. when people make new friends or a new link is
added to a WWW page. This process often depends on the number of
connections (e.g. it is more probable that a gregarious person with many
friends will make a new friend). Therefore, in our model the out-degree
of a node increases with probability proportional to its present out-degree
kout [15,16]. A new outgoing link to a randomly chosen node is created with
probability pcc, which has the following form

pcc = r
kout

kmax
out

, (1)

where kmax
out is the maximal out-degree in the network, and r ∈ (0; 1) is

a parameter which controls the process of adding new connections. The
greater r the faster increases the number of connections. A scheme of the
creation of new connections is shown in Fig. 1(a).

Number of outgoing links grows not only by simple adding new links to
other nodes in the network (in our model with probability pcc). In some real
networks this process is connected with creating of a new node. In the case
of WWW a new page containing more data on a given subject can be added
to main page. Such a process is more probable for larger (i.e. with greater
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Fig. 1. A scheme of the creation of new connections (a). New connections are

denoted by dashed line. Node i creates a new connection to a randomly chosen

node j with probability pcc and with probability pcn a new node l is created and

attached to the i-th node. The value of intrinsic variable of the new node is

Sl = Si. As a result of rewiring process (b) the connection pointing to the j-th

node is rewired to the l-th node. A new neighbour of the i-th individual is chosen

from neighbours of the current neighbours of the i-th individual.

kout) and more popular (i.e. with greater kin) pages. Therefore, in our
model each node creates a new node and connection to it with probability
pcn proportional to its in- and out-degree

pcn = r
kout + kin

max (kout + kin)
. (2)

New node has the same value of variable S and n ∈ (0;m] connections.
One of its links points to main node (the i-th node in Fig. 1(a)) and the rest
to randomly chosen nodes (see Fig. 1(a)).

The evolution of the location of links is based on local rules and depends
on the values of intrinsic variables S. In order to describe this evolution we
define distance dij which measures the difference between values of intrinsic
variables of a pair of nodes (i, j)

dij = |Si − Sj| . (3)

In each time step an outgoing link of the i-th node, pointing to a neigh-
bour for which dij has the largest value, is chosen. Next, a neighbour of the
neighbours of the i-th node is chosen with respect to the smallest distance
dil. If dil < dij the chosen link is rewired to a l-th node (see Fig. 1(b)).

In real networks, rewiring is connected with a certain cost, therefore,
this process is not always rewarding. However, in the case of WWW cost of
rewiring is very small and in order to simplify our model we do not take it
into account.



1788 A. Grabowski, R. Kosiński

In our model we have three mechanisms of network evolution observed in
many real networks: (a) adding and removing nodes [17], (b) creating new
connections between nodes and (c) rewiring connections. The evolution of
the network is controlled by two parameters: r, which controls the rate of the
growth of the network, and m, the maximal number of initial connections
of a node.

2. Results

In order to calculate the in- and out-degree distribution we use numer-
ical calculations. It turns out, that for wide range of control parameters
(m > 1) the network has scale-free properties with power-law form of out-
degree distribution P (k) ∼ k−γout and in-degree distribution P (k) ∼ k−γin.
The values of γin and γout in the function of control parameters is shown
in Fig. 2.

Fig. 2. The influence of value of the parameter r on γout (a) and γin (b) for different

values of m. The in- and out-degree distributions have power-law form (scale-free

network), P (kout) ∼ k
−γout

out
and P (kin) ∼ k

−γin

in
, respectively.

The in-degree distribution is not scale-free for m > 5 and r < 0.5,
because the process of creating new links is too fast. As a result of fast
creation of new links, the number of nodes with different values of S is low
and there is a large number of nodes with low connectivity (parallel with
process of creating new connections also nodes with small number of links
are created with probability pcn, see Eq. 2).

The in-degree kin increases as a result of creating new connections and
rewiring, but the influence of the process of rewiring is greater. When the
number of nodes increases too fast (grater r), the rate of the rewiring process
decreases and number of nodes with very large kin is low. Thus, an increase
in γin is observed for large r. On the other hand for very low r (r < 0.01),
the stochastic processes of adding and removing nodes are a dominant factor
and cause the distribution of links has exponential form P (k) ∼ e−k, which
is typical for growing random networks [9]. Hence, if r is low enough the
values of γin and γout increase with a decreasing r.
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For values of r ≈ 0.1 the influence of the process of adding and removing
nodes and the process of creating new connections seems to be balanced
and therefore, γin and γout takes minimal values. It is interesting that for
r = 0.1 obtained network has the same values of exponents of in- and out-
degree distributions as WWW network (see Fig. 3) [9]. Moreover, in the
case of obtained out-degree distribution the values of P (kout) for low kout

(kout < m) are approximately independent on kout, and this behaviour is
also observed in the case of WWW network [5, 9].

Fig. 3. The in-degree distribution P (kin) ∼ k
−γin

in
(a) and out-degree distribution

P (kout) ∼ k
−γout

out (b) for m = 7, r = 0.1 and different sizes of the network (N = 105

— triangles; N = 3×105 — crosses; N = 106 - squares; N = 3×106 — diamonds).

The values of exponents, γin ≈ 2.1 and γout ≈ 2.7, are the same as in the case

of WWW network. The data were log-binned, to reduce the uneven statistical

fluctuations common in heavy-tailed distributions, a procedure that does not alter

the slope of the tail.
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Values of exponents γin and γout are slightly influenced by size of the
system (see the inset in Fig. 3) and initial conditions (see Fig. 4).

Another characteristic feature of WWW network is a large value of a con-
ditional probability p ≈ 0.5, that a node x has a connection to a node y if
node y has a connection to x [9]. In our model p takes also large values, which
are approximately independent on the value of parameter r. In the case of
m = 1 the probability p has very low values, however for m > 1 the probabil-
ity p is large and decreases with an increasing m

(e.g. p ≈ 0.46; 0.38; 0.31 for m = 3; 5; 7, respectively).

Fig. 4. The influence of the initial conditions on the values of exponents γin

(squares) and γout (triangles) for m = 7, r = 0.1 and N = 3 × 105. P (γ) is

the probability density function and the standard deviation equals σ = 0.03 for γin

and σ = 0.035 for γout. The average values of the exponents are: γin ≈ 2.1 and

γout ≈ 2.7. Results were averaged over 600 independent simulations.

We calculate the clustering coefficient C of the network using following
equation

C =

〈

Ei

ki(ki − 1)

〉

, (4)

where Ei is the number of connections between neighbours of the i-th node
and 〈 . . . 〉 means averaging over all nodes. The results of numerical simula-
tions are presented in Fig. 5. For a low value of r the clustering coefficient
has a large value, as a result of high rate of rewiring process. During this
process, nodes create connections with nodes which have similar values of in-
trinsic variable S. As a result, groups of highly interconnected nodes emerge
in the network. A high value of C is observed in many real networks, e.g. in
social networks or in the WWW network (we calculate in the same way the
value of the clustering coefficient of a network from the nd.edu domain [18];
the result is C ≈ 0.17). For large r, the process of rewiring is not enough ef-
fective as result of fast increase in number of nodes. Therefore, the clustering
coefficient decreases with an increasing r.
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The behaviour of the clustering coefficient of a node for our model and for
real networks is an interesting problem. The clustering coefficient of a node
decreases with its number of connections and for m > 1 the power-law rela-
tion C(k) ∼ k−β is visible (Fig. 5). The value of β slightly depends on the
values of r and m and equals approximately b ≈ 0.85. Such a power law is
observed in some real networks (e.g. in an actor network, the Internet at the
level of autonomous system or the WWW) [19,20]. The power-law relation
C(k) obtained in our calculations is similar to the relation observed in hier-
archical networks [19]. Such power laws hint at the presence of a hierarchical
architecture: when small groups organise themselves into increasingly larger
groups in a hierarchical manner, local clustering decreases on different scales
according to such a power law.

Fig. 5. Relation between the clustering coefficient and r (a) and between the clus-

tering coefficient of a node and its out-degree kout (b). The data were log-binned,

to reduce the uneven statistical fluctuations.

Fig. 6. The correlations between the age of a node and its in-degree kin, for pr = 0.5.

The values of other parameters are: N = 3 × 105, r = 0.
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In a number of the models of growing networks a strong correlation be-
tween the age of a node and its connectivity is observed (e.g. the Barabasi-
Albert model of preferential attachment [5]). However, in many real net-
works, like the WWW, an opposite situation is observed [21]. Fig. 6 illus-
trates, that in our model, weak correlation between the age of a node and
its in-degree kin, are also observed. Calculations show that the smaller the
r the weaker the correlations.

3. Conclusions

In our model we investigate the properties of an evolving directed net-
work. It turns out that a simple rewiring process based on local rules leads
to a network which has nontrivial properties of real networks, e.g. scale-free
distribution of connectivity, a large value of the clustering coefficient and
a hierarchical structure.

A network generated by our model has a large value of the clustering
coefficient for a wide range of control parameters. The relation between the
clustering coefficient of a node and its outgoing connectivity has a power-law
form C(k) ∼ k−β, where β ≈ 0.85. Such power laws hint at the presence
of a hierarchical architecture: when small groups organise into increasingly
larger groups in a hierarchical manner.

Our model can be treated as a model of an evolution of WWW network,
where the intrinsic variable can be referred to the content of a page. For
a wide range of control parameters the generated network has similar prop-
erties to a real WWW network, i.e. hierarchical structure, large clustering,
weak correlation between the age of a node and its connectivity, scale-free
in- and out-degree distributions.

The work was supported by the Polish Ministry of Science and Higher
Education, Grant No. 1 P03B 145 29.
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