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We consider the self-organized escape of a chain of coupled oscillators
from a metastable state over an energetic barrier. The underlying dynam-
ics is conservative and deterministic. Supply of sufficient total energy or
application of external forces brings the chain into the nonlinear regime
from which an initially almost uniform lattice state becomes unstable and
nonlinear redistribution leads to strong localization of energy. A sponta-
neously emerging critical localized mode grows to the unstable transition
state and the chain, passing through the latter, performs a collective escape
process over the barrier. It turns out that this nonlinear barrier crossing
in a microcanonical situation is more efficient compared with a thermally
activated chain for small ratios between the total energy of the chain and
the barrier energy.

PACS numbers: 05.40.–a, 05.65.+b, 87.15.–v, 87.15.He

Recently, in the biophysical context there has been a growing interest
in barrier crossing of a polymer chain occurring e.g. during the transport
of long and flexible polymers across membranes, DNA electrophoresis and
many other situations [1, 8]. Characteristic velocities of these processes are
determined by the corresponding rates of transition out of and waiting times
of the chain in the metastable state. Thereby generalizations of Kramers
escape theory [9] in over- and underdamped versions have been widely ex-
ploited whose first extensions to multi-dimensional systems goes far back to
the 60’s [10].

While the thermally activated barrier crossing of oscillator chains has
been studied extensively [9] less attention has been paid to the zero tem-
perature limit when noise is absent. Here we develop a microcanonical sce-
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nario which is based on conserved total energy. The aim of our study is
to elucidate the impact of nonlinear effects on the escape dynamics in the
noiseless situation. We study how a long discrete chain of N oscillators
induces a transition over an energetic barrier by enhancing one or several lo-
calized breather states [11]. It will concentrate the initially almost uniformly
distributed energy by internal redistribution without interacting with and
gaining additional energy from a thermal bath.

We intend to show that the regime of nonlinear energy localization may
promote a faster escape dynamics than imposing the system permanently to
stochastic forcing. This is true if the initial energy per oscillator E0 is small
compared to the energetic barrier ∆E. One might compare E0 with kBT
given to each oscillator in a parabolic potential. In total the chain possesses
the energy Etotal = NE0. We will show that the nonlinear excitations
concentrate a comparably little energy onto a few members which are then
able to escape and pull afterwards by kink–antikink motion the remaining
chain over the barrier. Therefore, one justly might call this approach a self-
organized escape.

The scenario is related with a crossing of a saddle point in configuration
space referred to as the transition state [12]. But whereas in a Kramers-
like approach the heat bath is sampled for optimal fluctuations to generate
the transition state the latter appears in the microcanonical situation spon-
taneously. This generation is due to a modulational instability [13] of the
homogeneous chain in the metastable state and possibly subsequent inter-
action of breathers.

The long chain is modeled as an one-dimensional lattice system of cou-
pled N oscillators with Hamiltonian

H =
N

∑

n=1

{

p2
n

2
+ U(qn)

}

+
κ

2

N
∑

n=1

[ qn+1 − qn ]2 . (1)

We assume no bath, and hence no dissipation. The coordinate qn quantifies
the position of the n-th oscillator from a rest value in the direction per-
pendicular to the axis of the chain. pn denotes the canonically conjugated
momentum. We impose periodic boundary conditions.

The oscillators are coupled harmonically with nearest-neighbor interac-
tion strength κ. Equations of motion read

d2qn

dt2
+ ω2

0qn − aq2
n − κ [ qn+1 + qn−1 − 2qn ] = 0 . (2)

Each oscillator evolves in the anharmonic potential

U(q) =
ω2

0

2
q2 − a

3
q3 , (3)
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where a > 0. The metastable equilibrium of the potential is situated at
q = 0 and the maximum is located at q = ω2

0/a. There is a potential barrier
∆E = ω6

0/(6a
2) which oscillators have to overcome individually in order to

escape.
In a linear analysis the chain state is expressed as a plane wave solution

(phonons) qn(t) = A exp[i(k n − ωt)] + c.c. obeying the dispersion relation
ω2 = ω2

0 + 4κ sin2(k/2) with wave number k = 2πk0l/L. Therein l is the
chain spacing, L is the length of the chain (hence it yields L = lN) and k0

are integers in the interval k0 ∈ (−N/2, N/2].
But to create breathers the molecular chain has to be brought into a non-

linear regime. The physical situation is that the chain initially is bounded
at a certain position which corresponds to a local deep minimum of a po-
tential. In this situation linear forces are effectively acting only and energy
equipartition is stable. For the purpose to get energy localization one can
imagine two ways:

(i) Sufficient supply increases the energy per oscillator up to a level where
nonlinear cooperative excitations become important;

(ii) Application of an external pulling force changes the potential energy
such that again intrinsic nonlinear modes are excited.

Importantly these nonlinear modes localize energy and are unable to
interact with phonons preventing that the energy gets equalized. In this
way the equipartition becomes unstable. Provided there is enough energy
the chain will escape from the local minimum due the acting nonlinear forces.

Our physical picture is illustrated in Fig. 1 where we have presented the
second scenario to initiate instability of the homogeneous bound state. Let
us suppose that for t < 0 the chain is located in a stable bound state q0

(l.h.s.), i.e. the energy is almost uniformly distributed in the metastable
minimum and nonlinear excitations do not play a role.

For the onset of instability an overcritical force has to be applied. As
seen later the inequality (5) has to be obeyed for t ≥ 0 to get instability.
Therefore, the spatially uniform acting force F modifies effectively the pa-
rameter a of the potential U(q) of (3). The switch on of the constant force
at t = 0 modulates the potential in such a way that the relation (5) will
hold for all t ≥ 0. Afterwards, for t ≥ 0, the parameter a is kept fixed.

The application of the force has initiated a homogeneous elongation of
the chain, i.e. we have a plane wave with k = 0 and A = q0. Small
modulational perturbations on this plane wave solution are imposed taking
random initial amplitudes and/or momenta uniformly distributed in small
intervals |qn(0) − q0| ≤ ∆q and |pn(0) − p0| ≤ ∆p, respectively. Thus
the chain is initialized close to an almost homogeneous state and yet such
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Fig. 1. One-dimensional sketch of the preparation of the chain. Left: For t < 0

(l.h.s) the chain (ball) is positioned at the bottom q0 of a deep local minimum. The

equipartition of energy is stable due to the action of linear forces of interaction

and of the external potential U(q). Right: We assume the fast turning on of

a constant force F acting for t ≥ 0. This force decreases the barrier and modifies

the potential such way (r.h.s) that the chain is now under the influence of nonlinear

forces arising from the cubic nonlinearities in U(q) ∝ aq3. In result the chain forms

breather and equipartition is unstable. This instability let eventually the chain

escape with relatively small total energy. Fixing q0 of the chain during the turning

on of the force this position is becoming the relative initial elongation of the chain

in response to the action of the external force. We underline that the potential

energy gained during this turning on is too small for an escape without nonlinear

energy accumulation.

desynchronized (∆q 6= 0) to have small but nonvanishing initial interaction
terms. The energy per oscillator in this situation is small compared to the
barrier, i.e. E0 ≪ ∆E. Altogether the chain has a total energy of NE0

plus a tiny but important interaction energy initiating exchange between
the coupled oscillators.

We recall that an uniform lattice state with amplitude q0 and wave num-
ber k remains stable as long as the nonlinear character related with the aq3

term of the potential U(q) can be neglected. The chain evolves harmonically
and localization of energy does not take place. Otherwise the nonlinear part
of the potential makes a modulational instability of waves possible. That is
perturbations with a wave number Q may grow exponentially resulting in
accumulation of energy at the expense of energy from the other oscillators.

The exponential growth for k = 0 takes place with rate [14]

Γ = sin

(

Q

2

)

(8κ)1/4

√

10a2

3ω2
0

q2
0 − κ√

2
sin2

(

Q

2

)

. (4)

Growth is possible if the argument of the square root is positive. Thus it
must hold that



Cooperative Escape Dynamics of an Oscillator Chain . . . 1799

a2q2
0 −

3

10
√

2
κω2

0 sin2

(

Q

2

)

> 0 , (5)

which means that for fixed q0 the anharmonicity a needs to be large enough
or with given a the q0 has to obtain overcritical values.

To explore the formation of intrinsically localized modes in our discrete
system the set of coupled equations (2) was numerically integrated with
a fourth-order Runge–Kutta scheme. The accuracy of the calculation is
checked by monitoring the conservation of the total energy. Using as a time
step dt = 0.01 we find that at the end of our maximal simulation time t = 105

the accumulated relative error in the conservation of the total energy is less
than 10−5. The chain consists of N = 100 coupled oscillators.

Starting from an initial flat lattice state of nearly equipartition the at-
tainment of an array of breathers is observed. In more detail, due to mod-
ulational instability a pattern evolves in the course of time (of the order of
t ∼ 2 × 103) for which at some lattice sites the amplitudes grow consid-
erably whereas they remain low in the adjacent regions as seen in Fig. 2.
The breather states with relatively high energy occur spontaneously at an
average distance of the inverse wave numbers Q−1

max corresponding to the
maximal growth rate Γmax in (4). If moving these breathers have the ten-
dency to collide inelastically with other ones. In fact, various breathers
merge to form larger amplitude breathers proceeding preferably such that
the larger amplitude breathers grow on the expense of the smaller ones. As
a result energy gets strongly concentrated into confined regions of the chain.
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Fig. 2. Density plot of the energy illustrating the formation of a localized structure.

The panel on the r.h.s. assigns different colors to the energy content. Initial

conditions: q0 = 0.3, ∆q = 0.01, p0 = ∆p = 0. Parameters ω2

0
= 2, a = 1, and

κ = 0.3. Note the strong energy localization due to breather coalescence around

sites n = 13 and n = 81.
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This localization scenario as shown here in case of a metastable potential is
characteristic for many nonlinear lattice systems [13, 14]. In the beginning
the total energy Etotal = 10.936 which is equivalent to 8.2×∆E, is virtually
equally shared among all oscillators. The corresponding energy density, i.e.
the amount of energy contained in a single oscillator, lies significantly below
the barrier energy. Precisely, in Fig. 2 the ratio of initial energy and barrier
energy is E0/∆E = 0.08. In order that a single oscillator escapes it has to
accumulate the initial energy content of more than 12 other oscillators.

A breather may even grow such strongly in amplitude that the barrier
is surmounted. Whether a oscillator of growing amplitude can really escape
from the potential well or is held back by the restoring forces of their neigh-
bors depends on the corresponding amplitude ratio as well as on the coupling
strength. The critical chain configuration q̃n, that is the transition state
separating bounded from unbounded solutions, is determined by ¨̃qn(t) = 0.
Eq. (2) reduces to the stationary system−∂U/∂q̃n+κ[q̃n+1+ q̃n−1−2q̃n] = 0.
This equation can be derived from the functional of potential energy Epot(q̃n)
=

∑

n

(

U(q̃n) + κ
2
[q̃n − q̃n−1]

2
)

yielding in the critical configuration vanish-
ing force as ∂Epot/∂q̃n = 0. The corresponding solution of minimal energy
is on the lattice chain equivalent to a localized hump solution {q̂n} resem-
bling the form of a hairpin. In Fig. 3 profiles of this critical localized mode
(c.l.m.) {q̂n} for several coupling strengths are displayed. The stronger the
coupling the larger the maximal amplitude of the hump and the wider the
spatial extension of the latter. We underline that on a sufficiently extended
lattice the c.l.m. represents a narrow state, viz. its width is much smaller
than the chain length. Apparently a rising coupling κ implies an increase
of the critical energy Ecrit = Epot(q̂n). The latter is needed at least to get
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Fig. 3. Amplitude profile of the critical chain configuration for different coupling

strengths: κ = 0.1 (dashed-dotted line), κ = 0.5 (dashed line), and κ = 1 (solid

line). Note, that for better illustration only a small part of the lattice chain with

seizable elongations is shown. Parameters: ω2

0
= 2, a = 1.
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the chain elongated into its c.l.m. Since the critical equilibrium solution
{q̂n} determines a “force-free” chain configuration it tells us that once the
amplitudes have exceeded those of the (unstable) critical equilibrium con-
figuration an overall positive force acts on the oscillators so that they move
unidirectionally forward to escape as illustrated in Fig. (4) where the tem-
poral behavior of the force versus the lattice position is shown. Hence if
the kinetic energy overcomes the critical nucleus subsequent escapes of the
neighbors are initiated which progress on the chain to the left and right of
the hair pin as a propagating kink and antikink [4,15,16]. In this manner an
efficient lowering of potential energy is accomplished. Since kinetic energy
of this outward motion is increased return over the barrier into the well is
prevented.

The escape time for the chain, defined as the average of the moments
at which the N amplitudes of the escaping oscillators pass through a cer-
tain value q beyond the barrier (chosen as q = 10), as a function of the
coupling parameter is displayed in Fig. (5). Progress of escape is crucially
influenced by the fastest growing perturbational mode with wave number
Qmax = 2πNmaxl/L determining the number of oscillators, Nmax, belong-
ing to the arising localized pattern (cf. Eq. (4)). The optimal strategy
for fast escape is that one of the emerging humps, the number of which
is Nhump = N/Nmax, contains already energy larger than Ecrit. In this
case the localized pattern appropriate for escape has been provided al-
ready by the mechanism of modulational instability. Contrary, in case that
NmaxE0 < Ecrit further energy accumulation due to breather coalescence is
required which delays the escape process. To illustrate the impact of the
growth rate on the degree of localization of emerging patterns we present in
Fig. 6 the energy distribution
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Fig. 4. Escape process: Time-evolution of the force versus lattice position. The

panel on the r.h.s. attributes different colors to the magnitude of force. Parameters

as in Fig. (2).
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En =
p2

n

2
+ U(qn) +

κ

4

[

( qn+1 − qn )2 + ( qn−1 − qn )2
]

, (6)

at an early instant of time, namely after the formation of the spatially local-
ized structure due to spontaneous modulational instability has taken place.
For comparison patterns for three coupling strengths are shown. In all cases
a number of isolated localized humps has formed. The number of humps
Nhump can be attributed to the wave number at maximal growth rate as
follows: λpatternNhump = N and λpattern = 2π/Qmax. Most importantly, the
number of humps (besides their height and width) regulates how the total
energy is shared by them. Clearly, for κ = 0.31 (Fig. 6 (b)) the energy is
stronger localized (fewer humps and of higher height) than in the cases of
κ = 0.09 (Fig. 6 (a)) and κ = 1 (Fig. 6 (c)). Actually, for κ = 0.31 the
units at sites n = 11, n = 30 and n = 68 contain such sufficient amount of
energy En > 4/3 that they overcome the barrier. Thus a localized pattern
appropriate for escape has been provided already by the mechanism of mod-
ulational instability. In particular no further (major) energy accumulation,
which would delay the escape process considerably, is required.

Finally we compare the microcanonical escape process with a corre-
sponding thermally activated process in the Kramers problem [4–7,9]. The
Langevin equations read

d2qn

dt2
+ γ

dqn

dt
+

dU

dqn
− κ [ qn+1 + qn−1 − 2qn ] + ξn(t) = 0 . (7)

Here γ is the friction parameter and ξn(t) is a Gaussian distributed thermal
random force with < ξn(t) >= 0 and < ξn(t)ξn′(t′) >= 2γkBTδn,n′δ(t − t′).
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Fig. 5. Mean escape time as a function of the coupling strength κ exhibiting a reso-

nance structure. Remaining parameters as in Fig. (2) except for q0 = 0.4, ∆q = 0.1.

Averages were performed over 1000 realizations of initial conditions.
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Fig. 6. Spatially localized structure at t = 500 for two different coupling strengths.

Initial conditions and parameters as in Fig. 5 except for the coupling strength.

(a) κ = 0.09, (b) κ = 0.31, (b) κ = 1.

Our results are summarized in Fig. 7 showing the mean escape time of the
chain. We took averages over 500 realizations of random initial conditions
in the microcanonical and of noise in the Langevin equations, respectively.
The Langevin equations were numerically integrated using a two-order Heun
stochastic solver scheme. Results are presented as a function of E0/∆E.
For the deterministic and conservative system (2) E0 is given by the initial
energy per oscillator while it corresponds to thermal energy kBT in case of
the Langevin system (7). In both cases there is a rather strong decay of Tesc

with growing ratio E0/∆E in the low energy region. This effect weakens
gradually for further increasing E0. Remarkably, for low E0 (indicated as
the breather region in the plot) the escape proceeds by far faster for the
microcanonical system than for the one coupled to a heat bath. For small
kBT the escape time in case of the Langevin system exceeds our simulation
time. For E0/∆E ≥ 0.36 there is crossover so that the mean escape time of
the conservative and deterministic system nearly merges with those of the
Langevin system. A more detailed study which parameters determine this
crossover is in progress.
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Fig. 7. Mean escape time as a function of the ratio E0/∆E (for details see text) for

the microcanonical (dashed line) and Langevin (solid line) dynamics, respectively.

Some error bars are shown. Parameters: ω2

0
= 2, a = 1, κ = 0.3 and γ = 0.1.

Concerning the difference between the deterministic and stochastic na-
ture of the formation and stability of the c.l.m. we remark that under mi-
crocanonical conditions breather formation proceeds as an inherent and self-
organized process. A breather of high enough energy can be created either
directly due to a rapidly developing modulational instability or through
the subsequent coalescence of smaller-amplitude breathers. In particular,
breathers as coherent structures sustained by the nonlinear chain are fairly
robust, i.e. they are stable with respect to interactions with linear waves.
Notably, the deterministic processes take place on a time scale (see above)
that is short compared with the time it can take till in the stochastic bath
dynamics optimal fluctuations appear that trigger the formation of the c.l.m.
Even if in the stochastic process such a rare event has taken place the formed
c.l.m. may readily be destroyed afterwards due to interactions with the heat
bath.

In conclusion, supplying energy to a chain in a metastable state and
letting it afterwards evolve under microcanonical conditions is more effective
than leaving the system permanently in contact with a heat bath from which
energy can be absorbed. In other form, the underlying deterministic chaotic
dynamics, which is generated intrinsically through the interaction turns out
to provide an efficient mechanism for driving the escape process. At least
for small initial energies compared to the barrier values we have found faster
transition times. For moderate ratios the differences become negligible.
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Applications of this collective escape process are seen for the bound-
to-fragmented-state transition of a double-stranded molecular complex, the
translocation of trapped one-dimensional polymer through bottlenecks or
enzymatic molecular catalysis. Our study demonstrates the enormous capa-
bilities of nonlinear systems to self-promote their functional processes.

We thank for the fruitful discussions with Simon Fugmann and his per-
manent support. This research was supported by SFB 555 and the VW
Foundation Project I/80425.
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