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We report results of the computer simulation of the kinetic gelation
process of the formation of a two-dimensional network. The simulation is
performed on a basis of a two-dimensional triangular lattice. Our aim is
to analyze the distribution Ng(s) of the pore size s in the network, as
dependent on the concentration of the linear polymer molecules in the
system. Here we demonstrate, that for some critical concentration of the
molecules the obtained distribution is close to Ng(s) ∝ s−τ and it does not
depend on the probability of merging. The obtained value of the exponent
τ agrees with the result for clusters in the theory of percolation on the
two-dimensional lattice.

PACS numbers: 05.10.Ln, 87.14.Gg, 87.15.Aa

1. Introduction

Continuous search for potential applications of DNA is motivated by
special features of the DNA molecules. They are known to carry the genetic
information for life, but relations of their structure and particular biolog-
ical functions is not known. Their ability to associate with other DNA
molecules by means of specific base pairing mechanism [1] is much simpler
to describe, but research on possible consequences of this ability remain at
an introductory level. More than 50 years after the discovery of the double-
helical structure of DNA, possibilities of using DNA as new nanomaterials
are surprisingly rich [2, 3].

In particular, it is possible to construct spatial structures of DNA. These
structures can be spatially ordered, as two-dimensional arrays [4,5] or three-
dimensional crystals [6, 7], or disordered. Ordered DNA crystals can be
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used as molecular sieves [7]. Here we are motivated by a question if dis-
ordered structures can also play this role. Then, the pore size distribution
of such a structure is of interest. The process simulated is equivalent to
the irreversible kinetic gelation [8–10]. Up to our knowledge, the pore size
distribution has not been investigated there.

In a recent paper [11] we calculated the distribution of the pore size
of a two-dimensional random network, as dependent on size and density
of the DNA molecules which formed the network. The system was a set
of molecules which initially move in a triangular lattice, as in a lattice-gas
model [12] (although we prefer to imagine that the medium is rather a liquid
than a gas). Basically, two kinds of molecules should be used: linear and
branched. However, in our simulation the only role of the branched molecules
is just to enable the linear molecules to merge. Then, in fact the branched
molecules are absent in the simulation. Doing the calculations, we assumed
that at each time step the merging occured with probability one [11]. This
assumption was motivated by saving the computational time. However, it
is not realistic, as in any many-body system the probabilistic description is
known to be more appropriate. In principle, this assumption can also modify
the character of the processes, as some information on the initial structure
can be preserved artificially if the process of merging is too intense. Then
we released the above assumption and carried out the calculations. The aim
of this paper is to report the results.

2. Calculations

The simulation is performed on a basis of two-dimensional triangular
lattice with a lattice constant a. The size of the lattice was 512 × 512.
The simulations were made for different lengths L(a − 9a) and different
number N(1 × 104 − 9 × 104) of the linear molecules. Initial positions of
the linear molecules (with given values of N and L) were chosen randomly
with three possible orientations given by the structure of the lattice. During
the simulations the linear molecules can move along their axis, with equal
probabilities for both possible directions. When two linear molecules met
at a lattice node, they are merged with different probabilities ρ for different
computer experiments. This is an equivalent of different concentrations ρ
of the branched molecules. The maximal number of the linear molecules
at any node of the lattice was arbitrarily established to three (which is
simultaneously the number of arms of the branched molecules). In this
way, we introduce the limitation of excluded volumes to the model. At the
beginning there is a lot of free linear molecules in the system. At each step
of the simulation the number of the free molecules decreases, as most of
them get attached. However, the probability ρ remains fixed within a given
simulation. Its value is taken from 0.1 to 1.0. The procedure enables to set
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a number of the simulation steps after which the system does not change.
Then, the amount of the linear molecules which remain free does not excess
1 per 100. We checked that this condition is met when the number of steps
for all simulations was set to 100. At each step, all movable molecules
made an attempt to move. The results are averaged over 10 independent
simulations.

3. Results and discussion

Here we analyze the distribution of the pore sizes Ng(s) in the network,
as dependent on the number N of molecules per cell in the system. By
the term “pore size” we mean the number of free neighbouring nodes of the
lattice. As we reported in our previous work [11], the character of the pore
size distribution varies depending on the values of the N and L. When the
system is dilute (for short molecules and low concentrations of the linear
molecules) big isolated pores are present. For intermediate values of N
and L the Ng(s) curve in double-logarithmic scale becomes approximately
a straight line (a critical behaviour). Finally, for large values of N and L
(a dense system) the order of the magnitude of largest pore sizes s decreases
from 102 to 10 and the relation is no more a power law. Analysis of the
distribution of the pore size of the networks obtained for different values of
the length and the number of linear molecules in the system allowed [11]
to construct a phase diagram (N , L) (see Fig. 1). On this diagram we
can schematically mark a line near which the distribution of the pore size is
a power law Ng(s) ∝ s−τ (critical). Above this line the system is dense and
below the line it is dilute.
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Fig. 1. The phase diagram of the state of the network; where: × denotes dilute

system, • — critical behaviour and △ — dense system. The fuzzy character of the

critical line (two or more points marking the critical character for the same L) can

be a finite-size effect. The diagram is an improved version of Fig. 5 of Ref. [11].
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In Fig. 2, we show the results of the calculations of Ng(s) for ρ = 0.1,
0.3, 0.6, 0.9 and 1.0. As we see, the obtained points form the same plot,
except some spread at largest values of s. This means, that the pore size
distribution does not depend on the probability ρ of the merging. As this
probability controls the velocity of the formation of the network, we can
conclude that this velocity is not relevant. This means that the obtained
structure does not carry an information on the initial stage; we can speak
about some unique state, analogous to the equilibrium state in the statistical
mechanics.

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 1  10  100  1000

ρ = 0.1

ρ = 0.3

ρ = 0.6

ρ = 0.9

ρ = 1.0

Ng

s

Fig. 2. The pore size distribution Ng(s) for various concentrations ρ of the branched

molecules. The number of the linear molecules N = 3 × 104, and their length is

L = 7a. The solid line is the fit to the central part of the plot; its slope gives

τ = 2.04 ± 0.05.

Additionally, the superposition of the plots obtained for four values of
ρ improved the statistics with respect to the results reported in Ref. [11].
Central part of the plot fitted by the function s−τ gave the value τ = 2.04±
0.05. The error of this fitting should be multiplied by a factor 2 or 3 because
of the ambiguity of the selection of the central part of the plot. Nevertheless,
the obtained value nicely agrees with theory of percolation on the square
lattice, which gives τ = 187/91 [13,14]. We note that this theory deals with
the distribution of clusters, and not of the free spaces. This result suggests
the symmetry cluster-free space, which holds despite the fact, that the one
state of an empty cell cannot be projected into more states of an occupied
cell.

Concluding, the pore size distribution in the DNA network formed in the
kinetic gelation process varies from the regime of large pores to the one of
small pores through an intermediate (critical) state, where the distribution
is close to the scale-free one. The pore size distribution in the intermediate
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state is close to the result predicted by the percolation theory. We note,
that this result should be confirmed by simulations for larger lattices. We
note also that our simulation is not limited to DNA, but it can be equally
applied to other kinds of linear molecules.

The authors are grateful to Dietrich Stauffer for his illuminating
criticism.
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