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Based on a 2D version of the Smoluchowski-type model, formulated in
a phase space of the linear objects’ sizes R-s in terms of the mesoscopic
nonequilibrium thermodynamics (MNET) as a guiding formalism/mecha-
nism, we are looking in a comparative way for its basic trends and charac-
teristics in a suitably designed Monte Carlo (MC) computer experiment on
model biopolymer aggregation. The preliminary small-scale simulation re-
sults indicate that the examined hydrophobic-polar HP (dis)ordered aggre-
gations bear two-type signatures of the underlying (complex) Smoluchowski
dynamics. The first one is associated with a phase-separative tendency,
showing up, in suitable conditions, lamellar ordering within the cluster, in-
termingled randomly with an amorphous phase. This is the case called by
us the cylindrolite formation. The second-type signature, in turn, seems to
point out some more disordered-from-within overall HP aggregations, pre-
sumably resulting in establishing a large HP mega-cluster, tending to span
all over the available 2D simulation space. The quantitative characteristics
derived so far show up at best an approximative tendency towards interpo-
lating between this two types of aggregation/phase-separation signatures.
A certain hope for better adjusting theory to computer simulation may
come from realizing a non-Markovian character of the process which, for
example, enables one to manipulate with the time scale in a case-sensitive,
presumably excluded-area involving manner.
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1. Introduction

The kinetic-thermodynamic behavior of biopolymer assemblages evolv-
ing under a two-dimensional shear-free confinement, occurring in soft ma-
terials, seems to be a very intriguing issue from both physical as well as
medical points of view. The observed microstructures are largely a result
of some natural biopolymer folding and aggregation processes and can be
represented as two-dimensional matter organizations [1–3]. A set of exam-
ples may include at least two representative cases. First, the formation of
pathogenetic protein deposits in biological films, leading to neurodegenera-
tive diseases such as Alzheimer, Parkinson, prion [4] or Creutzfeldt–Jakob
diseases, or Renal Failure, is important for thorough exploration not only
because of finding a cure on these diseases but also because of the fact that
population of those disorders increases steadily over the years [5]. Second,
based on Langmuir–Blodgett, or specifically Langmuir–Schaeffer technology,
scientists are able to accelerate protein crystal growth which, in turn, en-
ables to get at possibly low-cost valuable test samples needed by modern
protein nanocrystallography [6].

In this paper, an attempt has been made to find out by means of the
proposed Monte Carlo (MC) simulation some of the main trends of two-
dimensional1 aggregates’ formation in model biopolymer matter (MBM)
under semi-dilute (solution) conditions, and to compare them, if possible,
with their known analytic counterparts originating from the Smoluchowski
dynamics [10]. The MBM matter consists of HP chains: The HP chains
are linear chains made of hydrophobic (H) and hydrophilic viz. polar (P)
residues [11]. Our approach is based on the possibly easiest although ef-
fective 2D lattice model called the tube HP (THP) model [12], utilizing
a MC algorithm for computer simulations of polymer folding, extended as
being applicable to the aggregation of HP chains, with an emphasis placed
on proper folding conditions which favor a long-range (fibrillar) order within
each model HP chain [12], and possibly, in clusters made of such chains [2].

From a molecular-level point of view, the MBM is readily mimicked by
the HP chains, and preferentially, by their clusters. The folding and HP-
chain clustering conditions are assured thanks to switching on the
H–H interaction mode of hydrophobic nature, while always disabling at
the same time the other types of the interaction modes, like P–P or H–P
(P–H). The effect of solution is generically built in the HP type description of
MBM. The chains are subjected to a 2D confined movement which leads to

1 A thorough motivation of exploring model biomatter aggregations exclusively in the
(effectively) 2D space has been contained in [7, 8]. It mainly refers to a kinetic-
thermodynamic optimality of such 2D evolutions occurring in viscoelastic [9] envi-
ronments in which phase separation and sol–gel type phase changes take place under
such geometrical confinement, e.g. the one due to adsorption.
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numerous formations of the biopolymer clusters of versatile types, e.g. either
polycrystals or disordered aggregates, distributed either sparsely (sol-like) or
tightly (gel-like) all over available geometrical-physical space. Thus, when
looking from a supramolecular-level point of view, MBM is assumed to form
by clusters which are made of a certain number of the HP chains connected
by at least two H–H interchain interactions. The clusters are always formed
by sequences of folding–refolding events, wherein a refolding is attributed to
aggregation of two or more HP chains. This is what both, experiment and
computer simulation, are able to tell us [2]. From them both, however, one
is also able to get some typical cluster–cluster aggregation (CCA) charac-
teristics [13]. As examples, one may invoke here: (i) an average number of
clusters involved in the CCA; (ii) an average radius, characterizing a CCA
under examination; (iii) an average area covered by CCA; etc. These are
also the observables characteristic of some percolation system such as the
one prone to gelation [7, 8, 13]. Fortunately, all characteristics, (i)÷(iii),
etc., are also fairly accessible by Smoluchowski-type dynamics [14, 15], in
our approach applied in terms of a (discretized) mesoscopic nonequilibrium
thermodynamics (MNET) system [14], working preferentially in the space
of the cluster sizes2. In this way, we allow ourselves to take an opportunity
to compare this type of well-known (Smoluchowski) theory [8, 15] with the
results obtained from our computer simulation of the biopolymer CCA.

The goal of this paper is to get some preliminary dynamic characteristics
of our MC-based CCA, resulting from HP-chain interactions of H–H type,
revealing the characteristics (i)÷(iii) mentioned above, and to compare them
thoroughly, whenever possible, to their mainly analytic counterparts, coming
from the Smoluchowski approach [15–17]. We present a preliminary but
quite systematic study on the growing stage, also emphasizing here (a) the
statistical distributions of non-Gaussian (Weibull) character; (b) sol–gel type
tendencies [16] towards the phase changes due to suitable alterations of the
ratio

δHP =
#H

(#H + #P)
, (1)

pointing to the relative number of the H groups in the (average) cluster;
here the symbol # denotes the number of H and P residues in the chain,
respectively.

The purpose of such exploration is to find out in which kinetic-thermody-
namic conditions microstructures such as 2D micelles (HP aggregates) or
fibrils-involving polycrystals called the cylindrolites may appear [17]. In

2 In the position space of the centers of mass of the clusters we rather encounter
a diffusion-reaction problem, with a chemical reaction source coming from H–H in-
teractions; there is no explicit drift term available therein, resulting mainly from the
free energy changes, presumably over some respective changes of clusters’ radii [10].
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order to do so, let us realize that, one of the most important parameters for
this model is also the concentration, which is defined as a relative number of
monomers included in the space over which the HP chains are distributed.
(So far, however, we present some results for fixed concentration values of
ρ = 1

10 or ρ = 2
5 .) Moreover, it turns out that the cluster size and shape

appear to be a result of presence of the hydrophobic residues in HP chain,
thus of the ratio δHP as a consequence thereof, cf. Eq. (1). The ratio δHP,
in turn, when being considered as a global measure, extended to the HP
clusters, constituting the MBM, depends on the concentration ρ.

In next two sections, we discuss dynamic parameters of the aggregations
looking at them from molecular and supramolecular points of view (Sec-
tions 2 and 3, respectively). In Section 4, we present and discuss some first
results obtained from the computer simulation, and how do they conform,
or do not conform, to those available from Smoluchowski (MNET) frame-
work [7,8,10,18]. Our efforts will be summarized in the concluding address
and perspective (Section 5), where a certain way of how to try to compre-
hend the obtained computer-simulation results just in terms of their analytic
counterparts, regarding a pivotal role of time scale and non-Markovianity in
the Smoluchowski framework [10], has been suggested.

2. Microscopic HP chain dynamics as manifested at a molecular
and few-clusters levels of description

Biopolymer chains immersed in an aggregating milieu striving for the
lowest possible energy, undergo the folding process disturbed consequently
by some assisting aggregation acts. The first step of our simulation is to
generate biopolymer chains using self-avoiding random walk algorithm, and
in subsequent steps, allow them to fold using MC algorithm [11, 12, 19]. In
our obstructed version of the 2D Go-type model [20], H–H contacts are in
favor and they are selected in a temperature-dependent way3 by means of
a dimensionless energetic parameter (H–P/P–H and P–P contacts do not
influence formally the process), namely

∆ε =
∆EH−H

kBT
(2)

(kB — the Boltzmann constant). As argued by others [11], in the HP
model ∆EH−H = −1[kBT ] can be assumed (and for THP ∆EH−H = −3 ÷
−1[kBT ] [12]), and has also been taken in our simulations. By manipulating
∆ε we can control over the free energy ∆Φ to be specified more accurately
in the next section.

3 Under a temperature value, T , typical for the room-temperature experiment that we
actually describe [2].
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Note only right here, that because the control should be consistent with
the analytic Smoluchowski framework [11], we are going to keep track of
− ∆Φ

kBT ∝ R [7, 8] for globally undense (“high-temperature”) and − ∆Φ
kBT ∝

lnR [10] for globally dense (“low-temperature”) HP aggregates, respectively,
formed at the supramolecular level, in order to see whether such a ten-
dency, derived analytically [7], is to be present in our MC simulation. In the
THP model, energy ∆EH−H is dependent upon an overall amount of rear-
ranging monomers before and after the native contacts are established. This
THP model prefers parallel configurations and is aimed to obtain some read-
ily crystallized macrostructures [12], cf. Fig. 1. Note, however, that such
a propensity to crystallization, offered naturally by the THP model, would
ultimately remain inapplicable to form (poly)crystals as far as an insufficient
number of H residues spoiled the long-range ordering in its fibrillar (lamellar)
form, see Fig. 1. On the contrary, preferring H–H contacts leads typically,
for a suitable range of T (temperature) values, to obtaining a cluster’s body
consisting of a crystallized hydrophobic core with some hydrophilic border
embracing it, wherein the structure of the border can be quite fuzzy or hairy
viz. irregular, cf. Fig. 2, though sometimes with appreciably small aspect
ratio. This is to say, that such clusters can also be of nearly round shape,
characteristic of biopolymer cylindrolites [17].

Fig. 1. Example of (non)crystallized hydrophobic cores (dark dots) with their hydrophilic

borders (light dots) depending upon the δHP ratio (for a given T ): (A) δHP = 1
2
, a tendency

for obtaining a long-range order within each 2D discrete object viz. cylindrolite [17] is

observed; (B) δHP = 2
5
, some different tendency of creating 2D discrete objects with non

long-range order prevails. A small local change in favor of hydrophobicity (changing one

P residue over one H residue in the chain sequence, cf. slightly different HP sequences

of nHP = 10 length chains, characteristic of some bold-faced H to P single replacement

— look at the bottoms of both parts A and B of the plot) causes a quite drastic global

change in the overall HP structure. (Presented are three-day simulation results based on

THP model with ρ = 2
5
.)
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3. Mesoscopic HP chain clusters’ dynamics as revealed at
a supramolecular (many-clusters) level of description

The 2D matter evolutions of interest undergo, in general, the following
scheme which relies on having three stages of the evolution being involved:
(i) nucleation stage; (ii) growing stage (GS); (iii) cessation-to-growth (ter-
mination) stage. First, since our computer simulations suffer from a finite-
size effect (they are small-scale simulations so far) we did not explore stage
(iii) which demands a truly long-time scale [8]. Second, we have attempted
to explore stage (i). From our preliminary considerations, it follows that
under the notion of stable (viz., non-disappearing) nucleus, we may under-
stand such an “heavy” outcome that experiences possibly small changes in
its translational motion. It implies that we assign rather a kinetic (non-
classical) than thermodynamic meaning to the nucleation stage [16,21], not
postponing totally the latter, however. Third, throughout the paper’s body
we extensively explore the GS in terms of its most interesting tendencies be-
cause it is the only stage witnessing truly a non-equilibrium MNET-oriented
character of the process. It suits very well the conception of the Smolu-
chowski framework which we take as a reference to our simulations [15, 16].
A few aggregations are presented in Figs. 2 and 3.

Fig. 2. Four THP microstructures with ρ = 2
5
, and a standard set of ∆EH−H-s taken from

the THP model [12], are presented upon certain δHP changes, indicating at first glance

a sol–gel tendency manifested while decreasing δHP value from right to left: (A) δHP = 3
10

;

(B) δHP = 4
10

; (C) δHP = 5
10

; (D) δHP = 6
10

. Realize that the bigger δHP is the larger

the voids are left amongst the HP clusters, although the more ordered the clusters can be

(the role of δHP as an order parameter may arise). Such a picture, especially Figs. 2C–D,

fairly resembles an effect of (viscoelastic) phase separation of (poly)crystalline phase which

manifests in close touch to sol–gel phase change, not achieved yet [7, 9]; also notice that

the mean degree of crystallinity for clusters, quantified by an account of the lamellar phase

in the system, is changing with an increase of δHP value, and approximately equals to (A)
5

100
, (B) 16

100
, (C) 19

100
and (D) 33

100
, respectively (quite a big jump between δHP = 5

10
and

δHP = 6
10

can be noticed).
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Fig. 3. A comparison of two distinctly different microstructures, obtained dur-

ing low-density (small ρ) computer simulations: (A) closely packed from within

(∆EH−H(intrachain) = −1[kBT ]); (B) loosely packed from within (∆EH−H(intrachain) =

−0.5[kBT ]) — some nuclei of a network (gel-like) microstructures can be seen, with a clear

tendency to elongation, which is an elastic property. Both these simulation results point

to the same parameters ρ = 1
10

and δHP = 3
4
. In the simulation, we distinguish between

inter- and intrachain interaction ∆EH−H(intrachain) = 2
3
∆EH−H(interchain), applied to (A)

and (B), respectively.

The Smoluchowski framework and its continuous as well as discretized
versions have been presented below in a sketchy way — an interested reader
is encouraged to consult [10, 17].

In this section, we would like to present the 2D polycrystal growth model
as driven by the rate of entropy change in our biomolecular dispersive-drifter
(binary system), manifesting typical MNET properties [14].

One of the MNET primary assumptions is a positive entropy produc-
tion in the system. As for our system, when temperature is kept constant
over time, the entropy production equation comes directly from 1st law of
thermodynamics4

TdS = −µdM , (3)

where S, µ and M have their usual meaning [18]. Eq. (3) via the flux-

force J =
∑2

j LijXj (j = 1, 2) (Lij stand for the Onsager’s coefficient while

Xj represent both thermodynamic forces of diffusive and drifted nature)
relations, and the continuity equation [18]

∂P (R, t)

∂t
= −

∂J(R, t)

∂R
, (4)

where P (R, t) stands for the probability distribution of finding the HP clus-
ter (the best option: the cylindrolite) [17] of linear size R at a given instant

t, after rewriting J(R, t) = −D(R, t)∂P (R,t)
∂R − B(R, t)∂∆Φ

∂R P (R, t), gives ul-
timately the Fokker–Planck–Smoluchowski (F–P&S) equation [8, 15]

4 Our system is an entropic system, i.e. T∆S ≫ ∆H , in which the entropy is supposed
to create some interesting order (towards cylindrolites [17]) versus disorder (towards
aggregates [13]) effects.
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∂P (R, t)

∂t
=

∂

∂R

(

D(R, t)
∂P (R, t)

∂R
+ B(R, t)

∂∆Φ

∂R
P (R, t)

)

, (5)

where the mobility B(R, t) = D(R,t)
kBT (D(R, t) is the diffusivity of the clus-

ter formations) in the R-space, with the free energy ∆Φ included in the
formalism, see the preceding section. In order to compare effectively the
Smoluchowski-type model with the result of our computer experiment let us
also write down a discrete version of equation (4) or (5)

P (R, t + ∆t) = P (R, t) −
1

vjump
(J(R + ∆R, t) − J(R, t)) , (6)

where vjump = ∆R
∆t , and the flux reads

J(R, t) = −D(R, t)
P (R + ∆R, t) − P (R, t)

∆R

−
1

kBT
D(R, t)

∆Φ(R + ∆R) − ∆Φ(R)

∆R
P (R, t) , (7)

J(R + ∆R, t) = −D(R + ∆R, t)
P (R + 2∆R, t) − P (R + ∆R, t)

∆R

−
1

kBT
D(R + ∆R, t)

∆Φ(R + 2∆R) − ∆Φ(R + ∆R)∆RP (R + ∆

R
, t) . (8)

Initial and boundary conditions obey

P (R, t) = P (R + ∆R, t) = 0 , (9)

or equivalently (in a MNET-like manner [18], cf. Eqs. (6)–(9))

J(R, t) = J(R + ∆R, t) = 0 , (10)

and
P (R + 2∆R, t = t0) = P0 , (11)

can freely be chosen as an initial (input) value. Eqs. (6)–(11) represent
a (virtually) working scheme which we did not apply explicitly to our simu-
lation yet although they: (A) conform well to the discrete character of our
process; (B) help in understanding the obtained evolutions; for example,
from them it is seen that the MNET BCs (Eq. (10)) are fulfilled and that
the free energy (change) ∆Φ subjected to a change in linear size ∆R, ap-
pears to be really the main driver of the examined process, cf. Eqs. (7)–(8).
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(Note that the scheme (6)–(11) stated above is exclusively the explicit finite-
difference scheme with its characteristic R- and t-increments in discrete size
and time domains, ∆R and ∆t, respectively.) Since, for a given time t, the
solutions to the F–P&S equations are known and take typically the form of
the Weibull function f(x|a, b), to be presented in a general form as [17, 22]

f(x|a, b) = ba−bxb−1e−(x

a
)

b

, (12)

(x > 0 — arbitrary argument, closely related with R; a, b — fitting pa-
rameters, one of which being related with the time t [17]), we then use this
function for fitting our simulation data, cf. Fig. 4. It is in a fair agreement
with what we get analytically [10, 17], wherein the obtained P (R, t)-s con-
form appreciably to the general mathematical (fitting) form presented by
Eq. (12). The presented statistics, can be directly related with the elemen-
tary definition of P (R, t), given by P (R, t)dR = dn(R, t) [8,10] which points
to the number dn(R, t) of clusters of a size taken from [R,R+ dR], this way
enabling to relate ultimately the probability P (R, t), dealt with as a num-
ber density, with an occurrence of the cluster of a given size, as depicted in
Fig. 4.

a

b

Fig. 4. Weibull-fitted histogram (Eq. (12)): the number of clusters as a function of the

attained size in the beginning (light line), in-between (gray line) and in the end (dark

line) of the three-day (ts = 3 days) simulation of HP aggregation the population of which

consists of 400 chains (left); on the right-hand side some controllable variations of the

fitting parameters a and b have been depicted.

4. Results and discussion

The preliminary small-scale simulation results obtained indicate that the
examined hydrophobic-polar HP (dis)ordered aggregations bear two-type
signatures of the underlying (complex) Smoluchowski dynamics. The first-
type signature is associated with a phase-separative tendency, manifesting
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in such a model viscoelastic HP medium, favoring, however, when starting
from a given, suitably large, relative number of H residues in an average
cluster, lamellar ordering within the cluster. This is the case called by us
the cylindrolite formation [17]. The second-type signature, in turn, achiev-
able for small-to-moderate values of the relative number seems to point to
some more disordered-from-within [13] overall HP aggregations, presumably
resulting in establishing a large HP mega-cluster, spanning (almost) all over
the available 2D simulation space, herein the square lattice. Thus, the quan-
titative characteristics derived so far, especially Figs. 5–7 below, show up
at best an approximative tendency towards interpolating between the two
types of aggregation signatures also known as the Smoluchowski dynamics
in the phase space of the cluster sizes [16, 17, 19].

The major MNET-type tendency observed is revealed by the presence
of the Weibull-type asymmetric cluster-size distributions [22] (see Eq. (7)
therein) characteristic of the examined MBM organizations, cf. [16, 17] and
references therein, as well as look at Fig. 4. One can see two significant
changes in cluster size distributions in each presented time step. They can
be attributed to the asymmetry of the distributions. They point to: (i)
maximum shift towards bigger cluster sizes; (ii) a difference between lifting
and dropping tendencies of the left and right arms of the distribution, re-
spectively, cf. Fig. 4. The property (ii) points out the experimentally proven
observation that smaller clusters always disappear at the cost of their big-
ger (neighboring) counterparts, which is also a principal landmark of the
Smoluchowski dynamics we have in mind [7, 8, 13, 17].

The three presented characteristics (Figs. 5–7), based on the simula-
tion result, showing type of aggregation presented by Fig. 2(D), and some
careful inspection of the picturesque tendencies seen from Figs. 2 and 3
enable to conjecture that our 2D HP aggregations are specifically able to
undergo a passage between the sparsely distributed sol and network-like
states, and may indicate which aggregation form (loosely- or closely-packed;
scattered, lamellar or crystalline) we are eventually dealing with. From [16]
it clearly follows that there is a correspondence between percolation-type
evolutions and their MNET counterparts, at least from the kinetic point
of view. It should be pointed out that both characteristics n(t) (Fig. 5)
and r(t) (Fig. 6) require quite an advanced derivation within the analytic
Smoluchowski framework [7, 8, 10, 16, 17] whereas their derivation, based on
the computer simulation, is relatively simple [21].

In Fig. 5, we present the number of clusters n as a function of the sim-
ulation time ts. For cylindrolites the number of ordered clusters, n(t) ∝

t−
7
6 [17]; the same quantity for aggregates n(t) ∝ t−

2
3 [22]. From our esti-

mation, see the bottom of Fig. 5, it appears that n(t) ∝ t−
2
25 , thus there

appears some discrepancy between simulation and MNET characteristics.
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We will try to explain it later. In Fig. 6, an average cluster size r as
a function of the simulation time ts is presented. For (dis)ordered aggre-
gates long-time results coming from continuous version of MNET [14] look
like: (i) for cylindrolites r(t) ∝ t1 (a nearly constant-tempo growth) [23],

(ii) for other aggregates r(t) ∝ t
1
3 (a phase-separation, decreasing-in-time

characteristics [16]). Our estimation, see the bottom of Fig. 6, yields so far

r(t) ∝ t
1
4 , thus quite close to the phase-separation characteristics but still,

as in Fig. 5, some discrepancy between simulation and MNET results can
be mentioned here. Notice, that in both characteristics the overall course of
changes agrees only qualitatively with its analytic counterpart, derived as
long-time asymptotics [8, 10, 17].

Fig. 5. The number of clusters n as a function of the simulation time ts. The fitting

function is presented at the bottom of the figure. Note, however, that the fitted data

tends to slightly change the course at about ts = 1150, which might indicate a still non-

late stage of the process.

Fig. 6. An average cluster size r as a function of the simulation time ts. The fitting

function is presented at the bottom of the figure.
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In Fig. 7, the free energy ∆Φ
kBT is shown as a function of the simulation time

ts. This free energy is obtained using −∆Φ ≃ ln[S(t)], where S(t) is the area
within a circle of the radius r(t), thus obeying naturally S(t) ∼ [r(t)]2 (this
radius is averaged over all aggregates appearing in time t). For cylindrolites

− ∆Φ
kBT ∝ ln

(

R
R0

)

[10, 17], for aggregates − ∆Φ
kBT ∝ R

R0
along with R ∝ t and

R ∝ t
1
3 , respectively, where R-s should go quite in tact (in time) with R-s,

specified by their time-scaling formulae above. Introducing the exponent’s

value from the approximation presented in Fig. 6 (r ∝ t
1
4 ) to the free en-

ergy fitting function − ∆Φ
kBT ∝ t

1
20 one obtains a dependence of − ∆Φ

kBT ∝ r
1
5 .

At this point, by accepting the above logarithmic formula [10], we suggest
that the obtained structure will be closely-packed (dense). Therefore, both
cases, a colloid-type aggregations with loosely distributed clusters [7,8] and
a closely-packed polycrystalline aggregations [17], amongst a few character-
istics, differ also when looking at their free energies, ∆Φ. In the former,
a linear-in-R case has basically been derived [8], although when consider-
ing a fractal character of the cluster (Figs. 2–3), it can be rewritten [7] as

a power-like nonlinear relation ∆Φ ∝
(

R
R0

)

df
2
, where typically the fractal

dimension df = 1.6 (but it can go towards lower values as well), see Fig. 7.

Fig. 7. The free energy value ∆Φ
kBT

as a function of the simulation time ts. The fitting

function is presented at the bottom of the figure.

In the latter, in turn, ∆Φ goes like ∆Φ ∝ ln R
R0

(supported somehow by

R ∝ t), since in the close-packing limit the cylindrolites are approximated
by the circles with df = 2, thus, contrary to the above, giving no ample
space for (colloidal or HP) fractality to enter. Moreover, this type of ordered
structure emerges from the solution due to a phase separation, and because
of the inherently non-negligible role of the solvent (H2O), presumably due to
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a viscoelastic (spanning) effect [9]. Internal ordering, in turn, does not favor
a total spanning over the lattice, which is only amenable when a not-so-high
value of H residues comes into play, see Figs. 2–3.

From our simulation data it follows that the aggregations go much slower
than in loosely- or closely-packed case obtained analytically in the long-time
limit [7,8,17]. The main cause of such a discrepancy relies practically on two
observations: the possibility of HP chains detachment included in MC model
(but not included in the MNET-type picture) and small-time and small-size
scale simulations performed. Short chains have quite a big possibility to
“walk” on the lattice, thus a big freedom of movement. Because of having
small clusters involved, the probability of detachment for any HP chain to
be finally connected to another HP chain by a single connection lies within
e−3÷e−1, depending on a type of connection. Thus, a relatively big number
of detachment events in small clusters is the main obstacle, whereas for
bigger clusters this effect is negligible because of trapping the chains inside
the cluster. As for the close-packing [8] as a whole, in all cases mentioned,
and shown in Fig. 2, one can always observe voids between clusters, either
relatively small or just large. But the voids preserve over all MC simulation,
so that we may rather speak of loosely-packed structures than of some readily
closely-packed.

5. Concluding address and perspective

To conclude, we have a monodispersive distribution of equal-length (in
fact, of small-length by now) HP chains that can (i) move randomly, perform-
ing exactly the typical moves assumed customary for the HP model (kink
flip; crankshaft; HP-chain free-end flip, cf. [2, 12] and references therein);
(ii) fold towards its native state; (iii) and finally, aggregate by partial re-
folding viz. a retour from the native state, forming either more ordered
clusters, termed by us cylindrolites, that may resemble the Eden flocks [24]
or melted 2D Wigner quasi-crystals [1], or more disordered aggregates that
are sometimes able to span over quite a large subspace of the available space.
They can also be seen as quite elongated, presumably due to activated mi-
crorheological effects arising because of typically asymmetric H–H contact
distributions in the overall MBM so defined [25], assisted by some excluded-
area effect [19]. These effects can be attributed to some viscoelastic phase
separation occurring in the 2D amphiphilic system that we actually examine,
cf. [9] and Figs. 2 and 3 of Section 3.

Moreover, a carefully corroborated phase diagram, with the order pa-
rameter δHP examined in the course of the HP molecules’ concentration, at
some given T values, can certainly enlighten some peculiarities of the studied
process even more, cf. Ref. [2] and the phase diagram available therein.
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Phenomena, and characteristic behaviors of similar type to these pre-
sented in this work can also be found in other systems, such as ferro- versus
paramagnetic or (wet, force-free and prone-to-elongation) granular [26, 27].

To sum up in part, let us right now list the following points to be im-
proved while further exploring the hybrid (computer-and-MNET) model pro-
posed:

• small-scale simulations have exclusively been applied so far (typically,
the simulation matrix is L × L, where L = 100 and the length of
a HP-molecule lHP = 10);

• simulation “time” ts is clearly not a real time5, so that we have so far
no special feeling about the stationary (long-time) states, if exist, and
the CtG effect (to appear in finite-size configurations) [28];

• molecular nature enters in its simplified HP form the computer model
and is, unfortunately, not included at all in any MNET description
[10, 11];

• no polydispersion of the HP-chain length, pointing towards more real-
istic description of the aggregations, has been involved so far;

• possibility of random detachment is present generically in the model
but is totally absent in MNET-type description of the aggregations
[10, 16] to which we compare our simulation results.

The above mentioned constitute the main course of as yet immature config-
urations obtained that show up unquestionably a MNET-oriented tendency
but in a (so far) qualitatively approaching way, cf. Figs. 5–7. To remedy this,
it should not be likely permitted to compare the simulation data directly to
the analytic results too tightly but rather to continue the approach with
its properly discretized version, see Eqs. (6)–(11). In particular, a proper
adjustment of the time scale, coming directly from our analytic considera-
tions [10,17] can be proposed, thus leaving the problem with an appropriate
(fractal-like) form of D(R, t) involved in Eq. (5). As is known [22], at least an
asymptotic form of D(R, t) can be proposed as D(R, t) ∝ Rα1

tα2
(for t >> t0),

where α1 is a known mainly geometrical exponent [10,17] whereas α2 can be
thought as some suitably adjusting and case-sensitive parameter. Such an
inverse power-law type relation in time (t) comes from the physical fact that
we typically deal with a non-Markovian process [25,27] in which the viscos-
ity of MBM changes due to inhomogeneities coming from the (non)linear
excluded-area effect [19] clearly seen from Figs. 1–3.

Moreover, let us remark that in our model we have implicitly included
H2O. By definition, a rule applies that the H residue does not like water

5 A properly rescaled time has to be included inevitably in our future simulation tasks.
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whereas the P residue of any HP biomolecule does — an extension of the
above can then be seen towards explicit involvement of H2O [29].

Next, let us repeat that the preliminary small-scale simulation results ob-
tained indicate that the examined hydrophobic-polar HP (dis)ordered aggre-
gations bear two-type signatures of the underlying (complex) Smoluchowski
dynamics: a phase-separative tendency [9], and predisposition to establish-
ing a large HP mega-cluster [8], spanning all over the 2D simulation space,
thus interpolating somehow between these two types of aggregation/phase-
separation signatures. An open question remains, as for completing suitably
the Smoluchowski framework in order to accomplish a better approxima-
tion to the MC simulation data, cf. the time-scale considerations toward
a refinement [10, 17, 22].

Thus, as for the perspective, let us underscore that the scaling formula
such as r2(t) ∝ t2/(d+1) [16], whereby d = 2 with the rescaled time t → tα2

can effectively be used to get the particle mean square displacement (msd)
of specific semi-concentrated colloid-type HP systems. (Notice that α2 has
to be a truly fitting parameter/exponent, uncovering some merely viscous
properties of the specific HP aggregation of interest.) For instance, in the
case of the sol–gel continuous phase transition reported in [30] the exponent
of the initial and final phases can be acceptably well-reproduced by taking
into account the dominant role of clusters’ surfaces (lines, in a 2D space) [16],
as was also applied in [7, 8].

In our nonequilibrium-thermodynamics model [10,17], the characteristic
(geometric) exponent χ = 2/(d + 1) of these phases corresponds to χ = 1
for d = 1 (no surface) and χ ≈ 0.66 for d = 2 (a planar geometry) which
is very close to a measured value of 0.7, see Fig. 4 of Ref. [30]. Thereby,
experiment and theory reveal almost the same exponents’ values under which
the same dynamic behavior, i.e. a passage from a diffusive (sol) to some
subdiffusive (gel) state can be seen [7,8]. This is also confirmed by relaxation
measurements, cf. Fig. 3 of the mentioned paper [30] and our considerations
offered below.

The msd stated ultimately here by r2(t) ∝ t2α2/3 [16] can be further
related with the so-called creep compliance κ(t) (a mechanical property),
defined by the average strain to be assigned to a probe particle an HP cluster,
immersed in our HP viscoelastic medium, divided by the corresponding shear
stress [30], namely r2(t) ≃ κ(t). (Certainly, the strain always arises from
asymmetric distributions of H–H contacts.)

In the microrheological high-T milieu considered in Refs. [7, 8], we have
made an attempt to define the inverse of κ(t), namely κ−1(t), as the internal
matrix stress σM(t) accumulated within the inter-cluster spaces of the ma-
trix, assuming that in the late-stage growing conditions the average strain
can approach a constant.
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Thus, the viscoelastic properties of the HP aggregations can also be
analyzed by means of their msd-involving behavior, provided that (i) one
readily enters the late-time zone; (ii) the effectively 2D space is a space
optimal from thermo-kinetic point of view [7, 8]. In view of the above, our
HP aggregations manifest a really slowly creeping behavior, cf. Figs. 5 and 6
for details.

In a final word, let us remind that the so far performed first-draw com-
parison between theory and simulation, though not completely satisfactory
yet, makes sense when one would accept the fact that the process is some-
how renormalizable (self-similar in a statistical sense [8]) when passing from
molecular to supramolecular level, thus the intra- and interchain effects
would ultimately contribute in a similar way [2,11,15,16], cf. Fig. 3. More-
over, at both levels one expects univocally to model the process as a two-state
process, wherein surmounting the arising (or, assumed) energetic Kramers-
type barrier is a necessary way to follow.
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