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The ergodic hypothesis due to Boltzmann represents a foundation of
statistical mechanics. In spite of its importance, whether the hypothesis
is really valid, or even to what extent it is valid, is still not established.
To help make the ergodic hypothesis more amenable to physical tests, we
need to develop a workable ergodic condition. If a system is Hermitian, it is
possible to formulate an ergodic condition using a dynamical response func-
tion appearing in inelastic scattering processes. The ergodic condition is
expressed in terms of the relaxation function. It describes when the hypoth-
esis is valid and when it can break down. As an application we show that
a system ceases to be ergodic when the critical temperature is approached.

PACS numbers: 05.30.–d, 05.20.–y

1. Introduction

Statistical mechanics is built on two important foundations: Gibbs’ en-
semble theory and Boltzmann’s ergodic hypothesis. The ensemble theory is
used almost exclusively in statistical mechanical calculations, so that its va-
lidity is beyond question. The ergodic hypothesis (EH) is generally assumed
to be valid but it rests on much less firm ground. In many places one reads
that it is not universally valid [1]. There have been shown that in certain
models it actually fails based on the arguments of inequalities [2, 3]. These
uncertainties make it all the more necessary that we need to put the study
of the validity of EH in the forefront of our attention.
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The difficulty of proving or disproving EH in a many body system in
thermal equilibrium is well known [4]. One would need to know how to
solve the equations of motion e.g. Heisenberg equation. One must still face
an infinite time integral which may not be easy to handle. For these reasons
the study of EH has not been undertaken until very recent times. Advances
in solving the Heisenberg equation or its analog the generalized Langevin
equation have encouraged many workers to re-examine EH from a variety of
different perspectives [5–17].

In statistical mechanics we deal with models of infinitely many degrees
of freedom. What is needed is a kind of measurer or even a meter with which
one could determine whether a given model is ergodic in a certain physical
domain such as high temperatures, or whether such a model can cease to be
ergodic upon entering a different domain like the critical region. A workable
ergodic condition could provide an answer if one could be found. Our study
is premised on finding an ergodic condition with which one can say that
this one is ergodic and why it is so, or that one is not and why it fails to
be ergodic. Arguments based on inequalities cannot readily adduce physical
underpinnings although they might in some cases determine whether a sys-
tem is ergodic or not [2,3]. These arguments are also not general enough to
go beyond those which may be adapted to this approach. We shall see that
it is possible to obtain a general ergodic condition if a system is Hermitian.

2. What to time average

In the ergodic theory, which is a study in pure mathematics concerned
with EH in classical statistical mechanics, almost any dynamical function
may be considered provided that it is an integrable function [18]. We depart
from this practice and look for a particular dynamical function which plays
a significant role in inelastic scattering processes. In such a function we
may find a link between EH and energy absorption by scattering. When
a many-body system is inelastically scattered, the scattered energy must
delocalize in that system in some manner. The delocalization process means
a time evolution. Since time averaging is taken over the time of evolution,
it seems clear that there has to be a connection between EH and energy
delocalization [19].

For these reasons, we shall consider the time dependent susceptibility
χ(t, t′) from linear response theory. Let 〈A(t)〉 = TrAρ(t), where A is
a dynamical variable (e.g. a density or spin density) at time t and ρ the
density matrix with H ′(t), where

H ′(t) = H(A) + h(t)A , (1)
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where h(t) is an external field and H denotes a system which may be an
interacting system like a Coulomb gas. We shall assume H to be Hermitian.
Then, the time dependent susceptibility is defined through [20]

〈A(t)〉 =

t
∫

−∞

h(t′)χ(t − t′)dt′ . (2)

We assume that the susceptibility is causal. According to linear response
theory [21, 22] which we adopt in this scattering formulation,

χ(t − t′) =

{

i/β 〈[A(t), A(t′)]〉
0 if otherwise

, (3)

where the brackets are now an ensemble average with the density matrix ρ
with H, not H ′(t). We shall time average over this quantity to see whether
we can recover the time independent susceptibility χ as EH would assert.

3. Time averaging and EH

We shall time average the time dependent susceptibility over a long time.
Consider the following time integral

Ita = lim
T→∞

1

T

T
∫

0

t
∫

0

χ(t, t′)dt′dt . (4)

A homogeneous macroscopic system always enjoys a stationarity property:
χ(t, t′) = χ(t − t′). We shall take advantage of this property and change
t − t′ → t′. This change of the variables helps to reduce the double integral
into a single one. Also, we shall henceforth suppress lim(T → ∞), but this
limit is always implied when T appears anywhere in an expression. Introduce
a new function ϕ(t) defined by

ϕ(t) =

t
∫

0

χ(t′)dt′ . (5)

Evidently ϕ(t = 0) = 0 and dϕ(t)/dt = χ(t). Consider the integral of ϕ by
partial integration:

T
∫

0

ϕ(t)dt = Tϕ(T ) −

T
∫

0

tχ(t)dt . (6)
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From linear response theory, χ(t) = −d/dtR(t), t > 0. If this is used in (6),
by yet another partial integration, we obtain for rhs of (6)

= T

T
∫

0

χ(t)dt + T R(T ) −

T
∫

0

R(t)dt . (7)

Thus the time average Ita(see Eq. (4)) becomes

Ita =

T
∫

0

χ(t)dt + R(T ) −
1

T

T
∫

0

R(t)dt . (8)

The above expression can be made to look simpler if we adopt the Laplace
transform expression, implicit with T → ∞ as stated earlier. Let χ̃(z) =
∫

∞

0
e−ztχ(t)dt, Re z > 0, and similarly for R̃(z). Then,

Ita = χ̃(0) + R(∞) −
1

T
R̃(0) . (9)

Evidently (9) looks a lot tidier. By EH, Ita = χ, where χ is the static
susceptibility. Thus by EH, we conclude that

χ̃(0) + R(∞) −
1

T
R̃(0) = χ . (10)

But is (10) really correct? Thus testing the correctness of (10) is equivalent
to testing EH itself. We restate EH on the susceptibilities:

lim
T→∞

T
∫

0

t
∫

0

χ(t − t′)dt′dt = χ . (11)

In Appendix A, we give another view showing how it might arise.

4. Relaxation function

Equation (10) shows that the validity of EH may rest on the behavior
of the relaxation function R(t) at least as far as EH on the susceptibilities
is concerned. The relaxation function is originally given by linear response
theory but it may also be defined independently, simply as an amplitude in
an inner product space realized by the Kubo scalar product [23],

R(t) = (A(t), A), t ≥ 0 , (12)

where A(t) = eiHtAe−iHt, A = A(t = 0), and ~ = 1. It has the following
important properties needed for our analysis:
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(a) R(0) = χ, where χ is the time independent susceptibility.

(b) dR(t)/dt = −χ(t), t > 0.

(c) dR(t = 0)/dt = 0.

If we Laplace transform property-b, together with properties-a and -c, we
obtain

χ̃(z) + zR̃(z) = χ . (13)

Evidently it is also true if z = 0. Thus,

χ̃(0) + zR̃(z) |z=0 = χ . (14)

Now we must recognize that (14) is an exact statement since it follows
from the definition of R(t). It may or may not possess any physical content
but it is an exact relationship. Let us compare (10) obtained by EH against
this exact one (14). We at once see that they do not agree. One must
conclude that EH cannot generally be valid!

But can it be valid in some special situations? It can happen if R̃(0) is
finite. If it is finite, it implies that R(t = ∞) = 0. Also it is possible that

R̃(0) is identically zero. We must remove this possibility since if otherwise
it becomes independent of T → ∞. Thus we arrive at a condition

0 < R̃(z = 0) < ∞ . (15)

If (15) is satisfied, EH on the susceptibilities is valid. It would appear at
this stage that EH is of limited validity. If R(0) = χ is finite, we introduce
r(t) = R(t)/R(0). We restate (15) as

0 < W < ∞ , (16)

referred to as the ergodic condition, where

W = r̃(z = 0) (17a)

=

∞
∫

0

r(t)dt . (17b)

We shall show below that W may be expressed in an infinite product of cer-
tain static quantities called recurrants. The English mathematician J. Wallis
studied infinite products in 1655(!) and our W is named after him.
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5. Recurrence relations method

The recurrence relations method has proved to be a powerful technique
for solving dynamical properties of Hermitian many body systems [23–26].
This method has now been widely applied to a variety of such models very
successfully [27–38]. According to this method r̃(z) is expressible in a con-
tinued fraction as:

r̃(z) = 1/z + ∆1/Z + ∆2/Z + · · ·∆d−1/Z , (18)

where d denotes the dimensions of the inner product space of A. It can
range from 2 to ∞. Also ∆1, ∆2, etc. are known as recurrants, the norms
of basis vectors spanning the space of A.

If d is finite, r(t) is periodic, thus r(t = ∞) 6= 0. It means that a system
which is spanned by a finite set of basis vectors in an inner product space
realized by the Kubo scalar product is never ergodic.

If d → ∞, its amplitude can decay to r(∞) = 0, termed irreversible [16].
We are thus interested in an inner product space with indefinitely many
dimensions. We now take the limit d → ∞ first, and limit z → 0 second on
r̃(z) of (18):

W = lim(z → 0) lim(d → ∞)r̃(z) (19)

=
∆2∆4∆6 · · ·

∆1∆3∆5 · · ·
(20)

an infinite product. The ergodic condition can thus be defined by (17a,b)
or (20). All three are equivalent, but on occasion one is easier to evaluate
than the others. Below we illustrate them by one example. Suppose ∆n = n

in some suitable dimensionless units, realized in a certain fluid model [39].
For this form of the recurrants, r(t) = sech t. Thus

W =

∞
∫

0

sech t dt = π/2 . (21)

If these recurrants are substituted in (19), it becomes Wallis’ infinite product,
recovering (21). This system, having r(t) = sech t and r(∞) = 0, is ergodic.

6. Ergodicity and self diffusion

If W = 0 or ∞, it fails to satisfy the ergodic condition. A system that
gives either one of the end values of the W spectrum is not ergodic. When
W = 0, it is referred to as the localization limit. It occurs when the energy
delocalization is incomplete due to the energy flow being locally prevented.
When W = ∞, the energy delocalization is also incomplete. But in this case
it is globally localized, whose motion is akin to a ballistic motion.
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In the case of W = 0, a system will behave irreversibly, i.e. r(t = ∞) = 0.
But the perturbation that is generated by an external probe will result in
a standing wave. The perturbation energy is not distributed over the nodal
positions of a standing wave. This leads to a failure of EH. In the case of
W = ∞, r(t = ∞) 6= 0. This is typical of how a Brownian particle behaves
in a sea of small masses. The time average is over the path of a Brownian
particle ignoring the internal degrees of freedom, again leading to a failure
of EH.

EH can be given different physical interpretation if A denotes the velocity
of a particle. If particles in a system are all identical, W = D the self
diffusion constant [40]. Thus ergodicity means self diffusivity. When EH
does not hold, self diffusion is either zero or becomes anomalous [41]. In
many cases one can understand the validity of EH through the physically
accessible self diffusivity.

7. Critical region

We will make one important application to the critical region. If a system
behaves ergodic when T is above Tc (critical temperature), does it remain
ergodic as T approaches Tc? This is a question that is particularly relevant
to experiment. To our knowledge there is no definitive theoretical under-
standing on it.

Let us assume that a system is ergodic when T > Tc. It means that the
isothermal susceptibility or compressibility χ is finite. When T is approached
Tc, we assume that it will diverge owing to an onset of critical fluctuations.
According to the structure of W given in an infinite product, see (20), all

recurrants are finite when T > Tc including ∆1 = (Ȧ, Ȧ)/(A,A). As T → Tc,

(Ȧ, Ȧ) remains finite, but (A,A) = χ → ∞. Thus W → ∞, attaining the
ballistic limit. Thus according to our ergodic condition, a system ceases to
be ergodic in the critical region.

The physical reason behind the loss of ergodicity in the critical region
is as follows: When scattered in the critical region, the critical fluctuations
subsume all the scattered energy leaving noncritical fluctuations essentially
unaffected. This behavior is much like a Brownian particle being scattered,
becoming independent of the internal degrees of freedom.

8. Concluding remarks

Boltzmann’s ergodic hypothesis represents a foundation of statistical me-
chanics. But to our knowledge there have been no theories providing an
explicit workable ergodic condition with which to establish the validity of
the hypothesis in a many-body problem. We have derived an explicit condi-
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tion (16), denoted by W , an infinite integral of the relaxation function given
by linear response theory. By the recurrence relations method W is shown
to be expressible in an infinite product, first studied 350 years ago by Wallis.
To our knowledge our work represents a first application of infinite products
in physical theory.

One immediate conclusion is that EH does not hold in the critical region.
EH can be interpreted in physical terms via self diffusion. EH fails when
self diffusion vanishes or becomes anomalous. This link suggests a possible
avenue to re-examine the ergodic theory from a physical perspective. In
particular it might be possible to approach Birkhoff’s theorem on EH via
the legs of self diffusivity. This work will be consider in the future.

I thank Prof. H. Park and Prof. M. W. Kim, respectively, chairman
of the School of Physics and director of the Korea Institute for Advanced
Study, Seoul for their kind hospitality where a portion of this work was
accomplished. I also thank Ms. Sherri H. McElroy for helping with the
preparation of this manuscript.

Appendix A

Origin of equation (4)

We follow linear response theory and use Eq. (2), identifying < A(t) >=
M(t), where M(t) is the magnetization at time t. It may refer to a param-
agnet or a simple ferromagnet above Tc. EH would asserts that

lim
T→∞

1

T

T
∫

0

M(t)dt = M , (A.1)

where M is the magnetization by an applied static field h, that is, M = χh,
where h is the applied static field and χ the static susceptibility. If (2) is
substituted in lhs of (A1), we obtain (suppressing the lim sign, which is
implied),

1

T

T
∫

0

t
∫

0

h(t′)χ(t − t′)dt′dt = M . (A.2)

Now we assume that h(t) = h, a constant external field. Then

h
1

T

T
∫

0

t
∫

0

χ(t − t′)dt′dt = M . (A.3)
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But M = χh by linear response theory. Hence under EH it follows that

1

T

T
∫

0

t
∫

0

χ(t − t′)dt′dt = χ , (A.4)

recovering Eq. (4).
One might argue that the lower limit on the integral in Eq. (2) should be

not zero but −∞. That is, the field h(−∞) = 0, which is gradually turned
on. This is a usual statement of linear response theory. In our treatment we
set h(t = 0) = 0, which turns out to be a little more convenient. If necessary,
it is possible to start with h(t = −∞). In this case, EH would assert that

lim
T→∞

1

2T

T
∫

−T

M(t)dt = M . (A.5)

Now the same analysis yields

χ̃(0) + R(∞) −
1

2T
R̃(0) = χ . (A.6)

If this is compared with (9), we see that the only change is T → 2T . Hence
there is no fundamental change by using h(0) = 0 in place of h(−∞) = 0.
We have adopted the form of (4) this being customary in the ergodic theory.
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