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We present a numerical procedure of solving the subdiffusion equation
with Caputo fractional time derivative. On the basis of few examples we
show that the subdiffusion is a “long time memory” process and the short
memory principle should not be used in this case.

PACS numbers: 02.50.Ey, 05.10.—a, 02.60.Cb

1. Introduction

The subdiffusion equation is of fractional order with respect to the time
variable. Unfortunately, the exact solutions are known only for relatively
simple systems, similarly to the normal diffusion case. In more compli-
cated situations such as a system with subdiffusion coefficient depending on
concentration, inhomogeneous fractional subdiffusive system or subdiffusion-
reaction system, one needs a numerical procedure to solve the equation. We
note that there are numerical simulations using many random walkers to
model a subdiffusive process. However, such simulations are not very effi-
cient as one has to follow trajectories of the numerous walkers. Therefore,
it is desirable to develop a method to numerically solve the subdiffusion
equation. Then, one can study inhomogeneous system with complex bound-
ary conditions, as membrane systems which are difficult to simulate with
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random walkers. Usually the subdiffusion equation contains the Riemann—
Liouville fractional time derivative of the order 1 — a (a denotes here the
subdiffusion parameter), which is not convenient for physical interpretation
of initial conditions. To get the subdiffusion equation with initial conditions
which have simple interpretation, one can use the subdiffusion equation with
the Caputo fractional time derivative of the order a. As far as we know,
there is a numerical method to solve the subdiffusion equation with the
Riemann-Liouville fractional time derivative [2]. The equation with Caputo
derivative has been numerically studied within the time fractional discrete
random walk [3].

Subdiffusion is a process with the time memory. There arises a practical
problem with the memory length, which extends to —oo. To omit the diffi-
culty Podlubny [4,5] postulated to apply the short memory principle which
assumes that the relatively small memory length is sufficient to obtain satis-
factorily accuracy of numerical solutions for sufficiently long times. However,
as shown here, the method produces significant differences between the nu-
merical and exact solutions. In this paper we present a numerical procedure
of solving the subdiffusion equation with Caputo derivative, which is based
on the fractional difference approach, and we briefly study the efficiency of
the short memory principle for this case.

2. Subdiffusion equation

The transport process is described by the subdiffusion equation [1]
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where 0 < a < 1, C(z,t) denotes the concentration of transported substance,
the Riemann—Liouville fractional time derivative is defined for a > 0 as
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where the integer number n fulfills the relation n — 1 < a < n.
The presence of time derivatives on both sides of Eq. (1) is not convenient

for numerical calculations. To simplify the numerical procedure we rewrite
the Eq. (1) in the form

CoaC(z,t)
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where the fractional time derivative on the left-hand side of Eq. (3) is now
Caputo derivative defined by the relation

t
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() denotes the derivative of natural order n.

We note that the Laplace transform of the Caputo fractional deriva-
tive involves values of the function f and its derivatives of natural order at
t = 0 while Laplace transform of the Riemann—Liouville fractional derivative
includes the fractional derivatives of f at t = 0. Thus, the physical interpre-
tation of initial conditions in the former case is clear in contrast to the latter
one [4]. So, it is more convenient to set the initial conditions for the equation
with Caputo derivative than for the equation with Riemann—Liouville one.

3. Numerical procedure

3.1. Fractional derivatives

To numerically solve the normal diffusion equation one usually substi-
tutes the time derivative by the backward difference 8](;(;) ~ L (t)_i(tt_m).
In the presented procedure we proceed in a similar way. For that purpose
we use the Griinwald-Letnikow fractional derivative, which is defined as

a limit of a fractional-order backward difference [4]
(2]
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where o > 0, [z] means the integer part of z and
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When the function f(t) of positive argument has continuous derivatives
of the integer order 0,1, ..., n, the Riemann-Liouville definition (2) is equiv-

alent to the Griinwald—Letnikow one [4]. So, we can take
RLaaf(t) _ GLaaf(t) (6)
ot ot
The relation between Riemann—Liouville and Caputo derivatives is more
complicated and reads as [4]
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where »
—— t>0
& — I'(g+1)
g+1(t) { 0 t<0 (8)

From Egs. (5)-(8) we can express the Caputo fractional derivative in terms
of the fractional-order backward difference [4]
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3.2. Algorithm

The standard way to approximate of the fractional derivative, which is
useful for numerical calculations, is to omit the limit in Eq. (9) and to change
the infinite series occurring in (9) to the finite one
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where arbitrary chosen parameter L is called the memory length. Substitut-
ing Eq. (10) to Eq. (3) and using the following approximation of the second
order derivative

Pf(x)  fle+Azx)—2f(x) + f(z — Ax)
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after simple calculation we obtain
L
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There arise a problem with the choice of initial conditions. We choose the
initial conditions only for ¢ = 0 assuming that the concentration given for
earlier moments t < 0 does not influence the process for ¢ > 0. This as-
sumption is in agreement with the procedure of solving the equations with
Caputo fractional derivative where the initial conditions are determined only
at t = 0 for the derivatives of natural order ) (t)|;—o, n = 0,1,...,[a] (here
fO =y ). In our considerations we have 0 < o < 1, hence it is enough to
set C'(x,0) as the initial condition.
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Starting with the initial condition C'(z,0) we will find the time iterations
C(z,tsAt) for ts = 1,2, ..., ts max. When the number of time steps ¢ is less
then the memory length L then we put L = t5 in the series occurring in Eq.
(12), otherwise the memory length is equal to L.

4. Numerical results

To test the numerical procedure we are going to compare the numerical
solutions of the subdiffusion equation with the exact analytical ones. For
that purpose we choose the homogenous system with the initial concentra-
tion

Co <0
C(a:,O):{ 00 250 (13)

The solution of the subdiffusion equation (3) with the initial condition (13)
is following [6]
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where H denotes the Fox function, which can be expressed by the series [7|
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The results of numerical calculations and the analytical solutions are
shown in the plots. In Figures 1-3 we present the numerical solutions of
the subdiffusion equation for different values of ¢, o, and D,. In each case
we present the plot of analytical solution (continuous line) and numerical
solutions calculated for different memory length L (symbols without line).
The time and the memory length are given as the number of all time steps
ts, max, Which corresponds to the “real time” ¢ by the relation ¢t = At -5 max.
In all cases we take Cy = 1, At = 0.1 and Az = 0.5 (all quantities are
given in arbitrary units); to calculate the analytical solutions (14) we took
100 first terms in the series occurring in (15). We add that smaller values
of Ax and At can be chosen, but the results are not changed unless the
coefficient D, (At)®/(Ax)? is significantly smaller than one. We can see
that the memory length determines the accuracy of numerical solutions.
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C(x.)

Fig.1. The concentration profiles C(z,t) calculated for « = 0.5, D, = 0.25,
tsmax = 100 and with different memory length L = 100(<$), 80(4), 50(0), 30(V),
and 10(0); continuous line represents the exact analytical solution.
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Fig. 2. The concentration profiles obtained for oo = 0.2, Do, = 0.2, ts max = 50 and
with memory length L = 50(<), 40(4), 30(c), 20(V), 10(0), and 5(x).
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C(x,t)
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Fig. 3. The concentration profiles calculated for o = 0.3, Do, = 0.1, time t5 max = 50
and with memory length L = 50(<}), 40(A), 30(o), 20(V), 10(0), and 5(x).

5. Final remarks

We have presented the procedure to numerically solve the subdiffusion
equation with Caputo fractional time derivative. The choice of the equation
in such a form is not accidental since the interpretation of the initial con-
dition in this case is simpler than in the equation with Riemann—Liouville
derivative. In all considered cases the numerical solutions coincide with the
analytical ones. In the studies [4,5] the “short memory principle” was postu-
lated. According to this principle, the fractional derivative is approximated
by the fractional derivative with moving lower limit ¢ — L, where L is the
“memory length”. The examples presented in [4] suggest that the L = 50
time steps gives a good approximation for times of the order of ¢ ~ 100 time
steps. However, the results presented here show that this memory length is
not sufficient for the subdiffusion case. Our analysis demonstrate that the
memory length should be longer than about 80 per cent of the value of time
variable.

Our numerical solutions,which are not presented here, show that the
memory length is significantly shortened when « is closer to one. This is
expected as for the normal diffusion L = 1. Here we demonstrated that the
short memory length is not universal principle for the subdiffusion equation,
especially for the case of relatively small values of subdiffusion parameter a.
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The length of memory was determined comparing the numerical and an-
alytical results. When the analytical ones are not known, it seems to be
reasonable to assume that L can be found by looking for a value of L be-
yond which the numerical results stop changing.
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fruitful discussions and critical comments on the manuscript. This paper
was supported by the Polish Ministry of Education and Science under grant
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