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A coarse-grained model of polypeptide chains was designed and stud-
ied. The chains consisted of united atoms located at the position of alpha
carbons and the coordinates of these atoms were restricted to a [310] type
lattice. Two kinds of amino acids residues were defined: hydrophilic and
hydrophobic ones. The sequence of the residues was assumed to be char-
acteristic for α-helical proteins (the helical septet). The force field used
consisted of the long-range contact potential between residues and the lo-
cal potential preferring conformational states, which were characteristic for
α-helices. In order to study the thermodynamics of our model we em-
ployed the Multi-histogram method combined with the Parallel Tempering
(the Replica Exchange) Monte Carlo sampling scheme. The optimal set of
temperatures for the Parallel Tempering simulations was found by an iter-
ative procedure. The influence of the temperature and the force field on
the properties of coil-to-globule transition was studied. It was shown that
this method can give more precise results when compared to Metropolis
and Replica Exchange methods.

PACS numbers: 02.50.Ng, 02.70.Tt, 87.15.Aa

1. Introduction

In last decades one observed a rapid development of simulation methods
applied to study the properties of polymer and biopolymer systems. Some
interesting results were obtained, however, for most biopolymer systems,
models were rather complicated and contained enormous amount of param-
eters. Therefore, it is sometimes difficult to judge which of them are really
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important to obtain proper results. This was the main reason for designing
and studying simple models of biopolymers. The most simplified models
of protein folding were introduced some years ago by Dill and Shakhnovich
and the main conclusion from these studies was that the compactness of the
chain induced some amount of secondary structures [1,2]. However, recently
Kolinski and Madziar [3] and Romiszowski and Sikorski [4, 5] pointed out
that the presence of long-range interactions was not sufficient to generate
the proper amount of secondary structures in the folded globule. A series
of papers by Kuznetsov et al. was devoted to the analysis of the collapse
transition with the respect to the hydrophobicitity of the chain [6, 7] while
the effect of chain stiffness on the transition was studied by Frenkel et al. [8].
The effect of the chain length and stiffness on the coil-globule transition was
studied recently by Binder et al. [9]. In the above-mentioned simple lattice
models of Kolinski and Sikorski et al. [3, 10–12] polypeptide model chains
were built on a lattice (310). The lattice used for the representation of pro-
teins mimics the real structures with great accuracy [11]. In these models
we introduced the primary sequence composed of two kinds of residues only
(called hydrophobic and hydrophilic) interacting with specific potentials.
It was shown that the formation of α-helices was marginal when no local
preference of forming the helices was present. The interplay between long-
distance tertiary interactions and a local helical potential during the folding
process was also studied. The next problem that came up concerned the
thermodynamic description of the coil-to-globule transition of polypeptide
chains. For this purpose we used the Replica Exchange Monte Carlo method
combined with the Histogram Method [13,14]. By applying this method we
determined the thermodynamics of the folding process and, moreover, the
accuracy of the calculations appeared to be much more precise when com-
pared to the classical Metropolis-like Monte Carlo method.

In this work we continue this approach to the protein folding prob-
lem. For this purpose we used the model mentioned above. We used
a Replica Exchange Monte Carlo simulation algorithm combined with the
Multi-histogram method. Such a combination allows one to obtain a very
accurate thermodynamic description of a system of interest. In order to
obtain the highest possible accuracy we applied a novel scheme for selecting
a set of temperatures used in simulations.

2. The model

In our model we replaced a real polypeptide chain with a sequence of
statistical segments connected by united atoms located on the positions of
alpha carbons while the remaining atomic details were suppressed. Such
a chain was restricted to a lattice of 310 type, which was frequently used
in simulations of biopolymers [3–5]. In this lattice we can reproduce the
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conformation of real proteins with the accuracy lower than 1 Å when com-
pared our structures with the real ones when the lattice unit was equal to
1.22Å. In order to make the model more realistic too small or too big angles
between the consecutive segments were excluded. In our study we used the
model chains consisting of two kinds of amino acid residues: hydrophobic
(called H) and hydrophilic (called P). The sequence of residues in the chain
was designed to mimic an idealised helical septet that can be found in real
helical proteins. Therefore, the sequence — HPPHPP — was chosen fol-
lowing the idea of Hodges et al. [15]. The differentiation between these two
kinds of residues was made by introducing the interaction potential of a pair
of non-neighbouring residues. The potential Vij had the following form:

Vij =











εrep for rij < r1 ,

ε for r1 ≤ rij < r2 ,

0 for rij ≥ r2 ,

(1)

where rij is a distance between a pair of residues i and j for |i−j|>2, r1 = 3
(lattice units) and r2 = 5 (lattice units). The repulsion for short distances
was assumed to be the same for all pairs εrep = 5kBT . This finite value of the
repulsion was chosen in order to help the chain to rearrange its conformation
in the dense collapsed state. The potential ε for intermediate distances
was assumed to take the following values: for a pair HH the potential was
εHH = −2kBT , for a pair PP εPP = −1kBT and for a pair HP εHP = 0.
The above assignment of potentials of interaction should help in forming
a hydrophobic core inside the chain collapsed at lower temperatures. This
set of interactions, although was not very realistic for proteins, was found to
be better than a pure “hydrophobic” potential and it guaranteed the proper
ground state of the system [16]. The preference of forming the α-helices was
also introduced into the model. Actually, we introduced the preference of
the formation of the right-handed helix only. The helical state is formed by
three consecutive vectors and can be identified from a value of the following
expression:

(r∗i−1,i+2)
2 = (~vi−1 + ~vi + ~vi+1) · sign((~vi−1 × ~vi) · ~vi) , (2)

where ~vi−1, ~vi, ~vi+1 are three consecutive vectors (segments) connecting i−1-th
i-th and i+1-th residues. A right-handed α-helical state corresponds to the
values of (r∗i−1,i+2)

2 between 9 and 25 (lattice units squared) [4,6]. The
appearance of a right-handed helical conformation in the chain during the
simulation process was associated with the energy loss equal to the εloc.
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3. The simulation method

The simulations were carried out using a combination of a Monte Carlo
Replica Exchange Method (REMC) [17], also known as Parallel Tempering
or Metropolis-Coupled Chain [18] and the Multi-histogram method. In the
REMC method we performed M simultaneous simulations of the same chain
(replicas) but each at the different temperature Ti. Each replica was a sub-
ject to the Metropolis sampling algorithm, where changes of chain conforma-
tions were made as a series of the chain local micro-modifications. The set
of elementary motions consisted of (Fig. 1): 2-segment motions, 3-segment
motions, end-of-the-chain reorientations. At certain time intervals a pair of
neighbouring replicas i and i + 1 was selected at random and the attempt
of their exchange was made with the following probability [19]:

Pi,i+1 = min(1, exp(−∆)) ,

∆ =

(

1

kBTi+1

−
1

kBTi

)

(Ei+1 − Ei) , (3)

where Ti and Ti+1 are the temperatures of the i-th and i+1-th replica res-
pectively while Ei and Ei+1 are their total energies, kB is the Boltzmann
constant. The replica exchanges lead to a random walk in the temperature
space and enable configurations to cross energy barriers. The system can
move out of local minima. Therefore, this sampling scheme provides an en-
hanced sampling of low-energy structures. The REMC is known as one of
the most efficient Monte Carlo based minimisation schemes [19,20]. During
a REMC simulation one can measure a desired property of a system sepa-
rately for each temperature. Thus, for each replica temperature a canonical

Fig. 1. A scheme of a polypeptide chain on a hybrid [310] lattice with the examples

of the local changes of chain conformation.
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average value of the property can be calculated. In order to compute the de-
pendence of a given observable as a continuous function of the temperature
one should apply the Multi-histogram technique [13], also known as WHAM
(Weighted Histogram Analysis Method) [14]. In this method total energy
distributions (histograms) were collected for each temperature during the
simulation. From this data it is possible to determine the density of states
Ω(E) for a given system.

The Multi-histogram procedure relies on a mutual overlap of the prob-
ability of states P (E) in the neighbouring replicas. Therefore, the optimal
temperature selection is an important factor influencing the accuracy of
a thermodynamic study. In this work we established the optimal temper-
ature set via an iterative procedure. We started from a set of uniformly
spaced temperatures. After a simulation conduced as described above, we
computed the first approximation of the density of states of our system.
Having known Ω(E) we can easily compute PT (E):

PT (E) =
1

Z(T )
Ω(E) exp

(

−E

kBT

)

, (4)

where Z(T ) is the partition function of a given system. This leads us to
a formula that describes an overlap between two distributions of states cal-
culated for two temperatures ove(Ti, Tj) (see Fig. 2):

ove(Ti, Tj) =

∫

min(PTi
(E), PTj

(E))dE . (5)

Our goal is to find such a set of temperatures, that keeps ove(Ti, Ti+1) val-
ues constant for each pair of adjacent replicas. This paradigm has two
features that are very useful for our simulations: (i) the constant overlap
ratio guarantees the convergence of Ferrenberg–Swendsen reweighting tech-
nique (ii) because ove(Ti, Ti+1) value is right-proportional to the ratio of
accepted replica swaps [21], we also keep the ratio of accepted replica ex-
changes on a constant level and achieve fast random walk in the temperature
space making our sampling yet more efficient. Obtaining such an optimal
set of temperatures is relatively easy: starting from the first temperature T1

one should look for a temperature value T2 that keeps ove(T1, T2) equal to
an assumed value. Such calculation must be repeated for ove(T2, T3), . . . ,
ove(Tn, Tn+1) until certain criteria is fulfilled, e.g. the certain number of
replicas were defined or the temperatures exceeded a certain value. Obvi-
ously, the number of temperatures in the set highly depends on the overlap
value: the higher overlap, the greater number of temperatures. In this work
we kept the overlap at the level of 0.85, while the number of replicas varied,
from 35 to 55 for different values of εloc and different iterations. The whole
procedure has been illustrated in Fig. 2.
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Fig. 2. A schematic overview of the algorithm for optimal temperature set selection.

First, conditional probability distribution of energy P (E|T ) is computed for any

temperature value from a predefined range (A). Then P (E|T ) dependence can

be used to compute ove(Ti, Tj) function, that is an overlap ratio between two

distributions: P (E|T = Ti) and P (E|T = Tj). The ove(Ti, Tj) is shown on (B).

The optimal set of temperatures, discussed in this work, must keep ove(Ti, Ti+1)

value constant for any pair of adjacent temperatures. Such a set can be found by

walking on the isoline of ove(Ti, Ti+1) plot (narrow white line). Each plot in the

panel (C) presents three distributions of states for the three temperatures: below,

at and above the transition point. The three plots in the panel (C) differs in the

overlap ratio (from the left: 0.8, 0.4 and 0.2).

4. Results and the discussion

The simulations were performed for linear chains consisted of N = 60
amino acid residues. The starting temperature range was from T = 1 to
T = 4 basing on our previous findings in order to cover the random coil
state of the polymer at high temperatures as well as the folded structures at
low temperatures [5]. The local helical potential εloc took value 0 (flexible
chains) and −8kBT (a very strong preference to form helical states).

The changes of the polymer chain’s size during the annealing process
are presented in Figs. 3(a), 3(b), where the mean-squared radius of gyration
of the chain 〈S2〉 was calculated directly from simulations. One can ob-
serve that the size of the chain decreases smoothly with the temperatureT .
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This behavior corresponds to the transition from high-temperature random
coil-like chains to densely packed globules at low temperature. The main
difference between the flexible chain and the chain with the preference in
forming secondary structures was the temperature of the transition: it was
shifted towards higher temperatures for εloc = −8kBT . One can observe
that during the subsequent iterations of the Multi-histogram method the
curve 〈S2〉 retains its shape but the position of the transition was shifted to-
wards lower and higher temperatures. The number of iterations required to
find the proper set of temperature and the 〈S2〉 curve was almost two times
greater for the chain with non-zero local potential. This can be explained by
the fact that in the latter case the energy hypersurface is more complicated.
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Fig. 3. The mean-square radius of gyration 〈S2〉 versus the temperature T for

the chain with local potential εloc = 0 (left plot) and εloc = −8kBT (right plot)

obtained in subsequent iterations.

It is difficult to determine the temperature of the coil-to-globule transi-
tion from the behavior of the radius of gyration because this parameter does
not change discontinuously. The estimation of the coil-to-globule tempera-
ture can be done from the behavior of the heat capacity. Fig. 4 presents an
example of the heat capacity of the model chain Cv/kB as a function of the
temperature. The curves in this figure correspond to the same iterations of
the Multi-histogram method as in Fig. 3(a). One can observe peaks on heat
capacity curves located at temperatures corresponding to the rapid decrease
of chain size. From the Cv/kB plot one can estimate the coil-to-globule
transition temperature: TC = 2.385 for εloc = 0. It should be also noted
that at very low temperature (T close to 1) another maximum on the heat
capacity curve appears. This temperature cannot be related to any changes
of chains size. It is difficult to explain the origin of this peak because it ap-
peared at temperature where the simulation algorithm is rather ineffective:
the fraction of the acceptance of local modifications of chain conformation
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and the fraction of replica exchanges are rather low there. Probably some
rearrangements (local ordering) in the dense collapsed chains takes place at
this temperature.
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Fig. 4. The heat capacity Cv/kB versus the temperature T for the chain with local

potential εloc = 0. The numbers of iterations are given in the inset.

It is possible to give the thermodynamic description of the system. Any
observable O can be determined as a continuous function of temperature
provided that an average value 〈O〉E has been computed for each energy
level E

O(T ) =
1

Z(T )

Emax
∑

E=Emin

〈O〉E Ω(E) exp

(

−E

kBT

)

. (6)

Fig. 5 presents an example of the free energy as a function of the total
energy of the system. The presented plot was calculated for a temperature at
which both minima on the curve corresponded to the same value of the free
energy. Both states, high-temperature (a random coil) and low-temperature
(a collapsed structure) have the same probability. Therefore, this case cor-
responds to the temperature of the coil-to-globule transition. The transition
temperature from this chain can be thus estimated even more precisely than
from a heat capacity plot: TC = 2.862. One can also observe that the barrier
between these two states is rather small (∼ 10kBT ) and is symmetrical.

5. Conclusions

In this paper we studied the properties of simplified models of polypep-
tide chains. These chains were modelled as a linear sequence of united atoms
that represented amino acid residues. The interplay between a tertiary po-
tential and a local potential preferring helical states was studied by means
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Fig. 5. The free energy F versus the total energy E. For the chain with the local

potential the εloc = −8kBT .

of Replica Exchange Monte Carlo simulations. The changes of the strength
of the local potential did not change the size of collapsed chains significantly
but shifted the coil-to-globule transition towards lower temperatures. The
low-temperature conformations were not unique although they contain large
fraction of secondary structures. The present work shows that the Replica
Monte Carlo method combined with the Multi-histogram Method can be
a useful tool for simulation of the simplified models of small proteins. It can
give us the thermodynamic description of the system.

The computational part of this work was done using the computer cluster
at the Computing Center of the Department of Chemistry, University of
Warsaw.
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