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ONE-DIMENSIONAL APERIODIC SYSTEMS

IN PHASE SPACE∗

B.J. Spisak, M. Wołoszyn

Department of Physics and Applied Computer Science
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland

(Received September 29, 2006)

We consider the localisation properties of electrons in one-dimensional
aperiodic systems. The phase space formalism based on the quasi-distribu-
tion functions is applied to the description of such systems. The Wehrl
entropy is calculated from the Husimi function and used for reconstructing
the localisation properties.
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1. Introduction

Electronic properties of a simple perfect crystal are determined by peri-
odicity of the system. The Hamiltonian has the translational symmetry of
the system and, therefore, we can classify the solutions of the Schrödinger
equation according to the irreducible representation of the symmetry group.
This irreducible representation is specified by the wave-vector k. The one-
electron states in the system are extended, and the wavefunctions of electrons
are given by the Bloch functions, ψk(x), which are plane waves modulated
by a periodic function of position x, [1]. The translational symmetry of the
system can be broken by an external perturbation (e.g. magnetic field, tem-
perature) or disorder that is almost always present in real systems. Other
class of systems which do not posses the translational symmetry are ape-
riodic systems. We expect that the one-electron states in such structures
can be localised in a finite range of the configurational space because at
the first glance the aperiodic systems look like the disordered ones. It is
especially interesting in the context of the metal-insulator transition in one-
dimensional systems. According to standard theory of localisation [2–7],
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all one-electron states in one-dimensional system are exponentially localised
for any amount of disorder. Meanwhile, numerical experiments performed
with the random dimer model [8] show the existence of both extended and
localised one-electron states. This unexpected result was confirmed experi-
mentally in semiconductor superlattice a few years later [9].

The aim of this paper is to study the influence of aperiodicity on the
electron localisation in quantum wires. Our alternative approach is based
on the phase space concepts of non-relativistic quantum mechanics [10, 11].
In this formalism, the quantum state of the system is described by the quasi-
distribution function in the phase space [12, 13].

The paper is organised as follows. In Section 2 we describe the theo-
retical model of quantum wire. As a basis of aperiodic potentials we use
four types of aperiodic chains: Fibonacci, Thue–Morse, Rudin–Shapiro, and
period-doubling sequences. In Section 3 we introduce the concept of the
phase space description of quantum systems and we calculate basic quanti-
ties characterising the localisation properties of the systems. In conclusion
we summarise presented results.

2. Model

The structural disorder is generated by the random positions of single
ions in space. In this case the effective potential arises from the superposition
of N ionic potentials, i.e.

V (x) =

N
∑

i=1

vi(x − xi) , (1)

where vi(x) is the potential of a single ion located at xi. The distribu-
tion of the ions in n-dimensional space may be described by a probability
distribution function of positions of single ions, P [{xi}], each of which is
characterised by the same repulsive potential (vi = v).

We apply this model to the description of finite aperiodic wires. The
quantum wire may be modelled by a one-dimensional chain of length L with
well defined positions of short range ion potentials. Therefore, we assume
that the effective potential is represented by a set of the Dirac delta functions
with strength v and located at the positions xi, such that xi+1 = xi+ai, with
i = 1, 2, . . . , N . Note that ai = a yields the crystal structure. The positions
of ions in the aperiodic wire are fully deterministic. This means that the
positions of single ions are well defined by appropriate family of two-sided
sequences. Here, we consider four types of sequences, namely Fibonacci,
Thue–Morse, Rudin–Shapiro and period-doubling ones [14]. We generate
these sequences over {0, 1}, using the following inflation rules [15, 16]
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(a) Fibonacci sequence: 0 → 01, 1 → 0;

(b) Thue–Morse sequence: 0 → 01, 1 → 10;

(c) Rudin–Shapiro sequence: 00 → 0001, 01 → 0010, 10 → 1101,
11 → 1110;

(d) period-doubling sequence: 0 → 01, 1 → 00.

In our notation zeros correspond to empty sites in the simple crystal lattice,
and ones correspond to delta potentials in the lattice.

The eigenfunctions of suitable aperiodic system are given by the solution
of the Schrödinger equation

−
~

2

2m
ψ′′(x) + v

N
∑

i=1

δ(x − xi)ψ(x) = Eψ(x) , (2)

with the boundary conditions
[

ψ(x+
i )

ψ′(x+
i )

]

=

[

1 0
2v 1

] [

ψ(x−i )
ψ′(x−i )

]

. (3)

We solve Eq. (2) for the above mentioned family of aperiodic systems. In
our calculation, we consider systems which consist of 100 elements. For
each system, we numerically calculate eigenfunctions ψn(x) with energies En

using simple shooting method. The numerical method is not appropriate in
case of transport properties analysis but here it may be used to investigate
localisation properties of the eigenfunctions.

Localised states may be characterised by localisation length λn defined
by the exponential decay of the eigenfunction

ψn(x) = An(x)e−|x−x0|/λn , (4)

where An(x) is the amplitude of wavefunction, and x0 is the centre of the
localisation.

In fact, the localisation length is not a well defined criterion of locali-
sation for the finite aperiodic or disordered systems as it was pointed by
Izrailev et al. [17]. In this case the localisation properties may be charac-
terised by the inverse participation ratio (IPR) which is defined as the second
moment of the eigenfunction local intensity |ψn(x)|2 and is given by [18,19]

P (n)
x (En) =

∫

dx |ψn(x)|4 . (5)

IPR is proportional to the length of the system part where the eigenfunction

is non-zero. For localised states P
(n)
x (En) ∝ L0, and for the extended states,

we have P
(n)
x (En) ∝ L−1.
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Fig. 1. Eigenfunction local intensity in case of the ground state n = 0 and n = 20

for (a) Fibonacci, (b) Rudin–Shapiro, (c) Thue–Morse and (d) period-doubling
sequences.

Selected eigenfunction local intensities of the discussed aperiodic systems
are shown in Fig. 1. Fig. 1(a) shows the ground state (n = 0) and one of
the excited states (n = 20) for the Fibonacci sequence with IPR values

P
(0)
x (E0) = 0.015 and P

(20)
x (E20) = 0.017, respectively. In Fig. 1(b) we

show the results for Rudin–Shapiro sequence. In this case the IPR values

are P
(0)
x (E0) = 0.235 and P

(20)
x (E20) = 0.135. Fig. 1(c) shows the same

states for the Thue–Morse sequence with P
(0)
x (E0) = 0.017 and P

(20)
x (E20) =

0.032. Fig. 1(d) shows the same states for the period-doubling sequence with
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P
(0)
x (E0) = 0.041 and P

(20)
x (E20) = 0.019. A similar analysis of the IPR

parameter can be performed in the momentum space but it is not important
for the present investigation and will be omitted.

The other the commonly used quantity in this case is the entropic lo-
calisation length, defined through the Shannon entropy of eigenstates [17].
We use this concept in the next section where we consider the phase space
structure of the eigenfunctions of the aperiodic systems.

3. Phase space description of quantum system

The usage of the phase space formulation of quantum mechanics allows
us to include simultaneously position and momentum representations in the
description of quantum state. It is very useful for visualising correlated
position and momentum properties of quantum state. This formulation of
quantum mechanics is based on Wigner’s quasi-distribution function [20]
and Weyl’s correspondence between an arbitrary physical quantity in classi-
cal mechanics and quantum-mechanical operators in the Hilbert space [21].
For a quantum system in a pure state, Wigner function carries the same
information as the wavefunction. In general, the Wigner function

ρW
n (x, k) =

∫

dx′ 〈x− 1
2 x

′|ψn〉〈ψn|x+ 1
2 x

′〉eikx′

, (6)

is normalised and real with its marginal distributions being the probability
densities. However, the Wigner function can take negative values in some
subregions of the phase space and, therefore, cannot be identified with a
probability distribution.

In the phase space, there exists an infinite family of quasi-distribution
functions which can be defined by taking different quantisation rules. A spe-
cial place in the formulation belongs to the Husimi function representing
a general class of non-negative quasi-distribution functions. The Husimi
function for the individual quantum eigenstates |ψn〉 is defined as a Gaus-
sian smoothing of the Wigner function and is given by the formula [12, 13]

ρH
n (x, k) = |〈x, k|ψn〉|

2 , (7)

where |x, k〉 is the minimal uncertainty state centred around the position x
and momentum k in the phase space.

The smoothing is realised over a domain with size not smaller than ~/2.
This process assures that the resulting function is positive defined [22].
In Fig. 2, we show the Husimi function (7) of the ground states and the
20-th excited states for the all aperiodic systems that are considered here.
In all cases, the Husimi function is located in the regular region of the phase
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Fig. 2. Husimi function for n = 0, n = 20 and for (a) Fibonacci, (b) Rudin–Shapiro,
(c) Thue–Morse and (d) period-doubling sequences (darker shade indicates larger
values).

space. For the Fibonacci (Fig. 2(a)), Thue–Morse (Fig. 2(c)) chains, the
Husimi functions ρH

0 (x, k) and ρH
20(x, k) are extended in the real space (line

or double line is parallel to the position axis). In fact, these quantum states
are very weakly localised in phase space. The most intriguing properties
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are displayed by the Husimi functions of the states in the Rudin–Shapiro
chain (Fig. 2(b)). The ground state is very well localised in both variables,
and the 20-th excited state is slightly extended in momentum space but it
remains localised in the real space. Similar properties of Husimi function
are observed in the limit of very strong disorder where the Husimi function
is given by a line parallel to the momentum axis [23]. The Husimi functions
for the period-doubling chain (Fig. 2(d)) exhibit intermediate properties,
namely the ground state is localised in finite region of real space and the
excited states are localised along the position axis.

Using the definition of the Husimi function we can introduce the phase
space IPR as a measure of effective volume occupied by the Husimi func-
tion in the phase space, e.g. [24, 25]. However, we consider Wehrl entropy
instead of the phase space IPR as an alternative measure of localisation of
the quantum state. The Wehrl entropy of individual eigenstates |ψn〉 in the
phase space is defined as follows [26, 27]

SW
n = −

1

2π

∫

dx dk ρH
n (x, k) ln ρH

n (x, k) . (8)

This quantity is small for eigenstates that are localised in the phase space
and large for the extended eigenstates.

Formally we can relate the Wehrl entropy (8) to the localisation length
λW

n in the phase space by the formula

λW
n = L exp

[

SW
n − Sref

]

, (9)

where quantity Sref = ln (2L)−1 is the normalisation factor chosen according
to Ref. [17,28]. In this definition the localisation length is normalised to the
length of the system.

In Fig. 3 we present the results of our calculations. We plot the local-
isation length as a function of the quantum number n for the considered
aperiodic systems. In general, the localisation length is increasing with the
quantum number n. It results from the fact that the Husimi function for
individual states occupy a bigger region of the phase space. For shorter
(N = 50) and longer sequences (N = 150) the same relations are observed
and the values of λW do not reveal any significant dependence on the system
size which is a consequence of the eigenfunctions and the Husimi functions
having very similar characteristics regardless of the above mentioned values
of N .

Points in Fig. 3 showing local minima of the localisation length (e.g.
for n = 60, Fig. 3(a)) correspond to the states, which energies are placed
near the edges of energy bands. That fact was confirmed by independent
calculations of the density of states function [29].
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Fig. 3. Localisation length in the phase space: n = 0, 20 for (a) Fibonacci, (b)
Rudin–Shapiro, (c) Thue–Morse and (d) period-doubling sequences.
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4. Conclusions

In summary, we have studied the effect of potential aperiodicity on the lo-
calisation properties for some one-dimensional isolated systems, considering
four types of potential sequences: Fibonacci, Thue–Morse, Rudin–Shapiro
and “period-doubling”. In the first part of our study, we have obtained the
eigenfunctions and energies of Eq. (2). Localisation properties of the eigen-
functions are characterised by the inverse participation ratio in the real
space. In the second part, we focus our attention on the phase space de-
scription of the quantum states. The individual states are represented by the
Husimi function. Using the definition of the Husimi function we calculate
the entropic localisation length based on the Wehrl entropy for all aperiodic
systems that are considered in this study.
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