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We recall the arguments that there should be a close connection between
the properties of elementary particles and the arena used for the description
of macroscopic processes, and argue that a natural choice for this arena
is provided by nonrelativistic phase space with momentum and position
being independent variables. Accepting standard commutation relations
for these variables, and adopting x2 + p2 as an invariant, we linearise the
latter á la Dirac. Phase space U(1) ⊗ SU(3) symmetry is then represented
in the relevant Clifford algebra. Within this algebra, the eigenvalues of
the U(1) generator are ±(+1/3, +1/3, +1/3,−1), characteristic of weak
hypercharge Y for three coloured quarks and one lepton. The total U(1)
generator contains contributions from the phase space and the Clifford
algebra, and leads to a relation, which we propose to identify with the
Gell-Mann–Nishijima–Glashow formula Q = I3 + Y/2.

PACS numbers: 11.30.–j, 03.65.–w, 02.40.–k

1. Introduction

In standard approaches the origin of internal symmetries such as colour,
flavour and various other experimentally unconfirmed “exotic” quantum
numbers is placed “outside” the familiar macroscopic space. In recent years
a lot of work has been devoted to approaches in which this “outside” is aug-
mented by endowing the configuration space with additional dimensions.
These additional dimensions are to be “hidden” from our macroscopic point
of view (e.g. by being discernible at very small distances only), but could be
identified through the detection of new particles carrying new exotic types
of quantum numbers [1]. In summary, this approach adopts the widely held
view that particles move in configuration space and then enlarges the latter.

The above view is driven by our every-day experience. However, it does
not have to be a good starting point for all questions. Physics provides
descriptions of Nature only, and the choice of the language of description
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may be crucial. In fact, the choice of the language may hinder our ability to
describe the microscopic world and to identify possible connections between
the properties of this world and those of the surrounding macroscopic world.
There are, therefore, physicists who advocate for an altogether different
description of classical macroscopic world.

Many arguments may be used to support the assumption that what we
really have to do is to find the unknown hidden links between the known
properties of the classical macroscopic world and the known properties of
the micro-world. Some of them are given in [2–5]. The approach of [5],
as argued therein at length, is based on the fundamental conjecture that
the properties of a continuous arena used for the description of classical
macroscopic processes must be strictly and closely related to the discrete
quantum properties of elementary particles, including the very appearance
of all quantum numbers characterising these particles, i.e. not only spin and
parity, but also colour, flavour, charge, etc. The relevance of this conjecture
for colour, flavour, etc. clearly depends on what is meant by the “arena”. In
the present paper I attempt to develop further the ideas originally proposed
in [4, 5].

As observed in [5], all of those quantum numbers of elementary particles
for which a connection with the properties of macroscopic space is known, are
related to the description of physical phenomena at a nonrelativistic level.
This concerns not only spin and parity, whose connection to the symmetry
properties of the three-dimensional space is well known, but also the very
existence of particles and antiparticles. Indeed, despite the widespread view,
based on the properties of the Dirac equation and holding that relativity is at
play here, the existence of the particle–antiparticle dichotomic variable has
a strictly nonrelativistic origin. The claim that the origin of the existence of
particles and antiparticles is in its essence nonrelativistic can be understood
intuitively by thinking of a nonrelativistic particle moving, as Feynman put
it, “backwards in time”. From this picture, one can see that the existence of
antiparticles should be closely connected with symmetry under time reflec-
tion, which has nothing to do with truly relativistic transformations. Thus,
it should be possible to contemplate the emergence of antiparticles within
a purely nonrelativistic description. Our version of relevant arguments will
be given in Section 2.

In view of the nonrelativistic nature of all quantum numbers for which
their connection with the macroscopic classical arena has been established,
the simplest expectation is that other observed quantum numbers of ele-
mentary particles may also be inferred through a nonrelativistic reasoning.
This makes our guiding principle more specific. Consequently, as in [5] we
limit ourselves to a nonrelativistic description, hoping that proper extension
to include relativity can be done at a later stage.
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In Ref. [5] it was argued that instead of identifying the arena of nonrel-
ativistic classical physics with the observable three-dimensional space, as it
is customarily done, one should adopt the description given by the language
of the nonrelativistic Hamiltonian formalism, in which momentum and po-
sition coordinates are treated as independent variables. In this description,
the arena in question appears to be that of phase space, and the issue of
a possible symmetry between the momentum and position coordinates can
be formulated in a more natural way. In the present paper, the idea of
connecting properties of phase space with quantum numbers of elementary
particles is pursued further.

The paper is organised as follows. In Section 2 we present our argu-
ment that the existence of the particle–antiparticle degree of freedom may
be deduced via a purely nonrelativistic reasoning. In Section 3 we intro-
duce language appropriate for the description of nonrelativistic phase space
with noncommuting momentum and position coordinates (technically, just
the three-dimensional harmonic oscillator), which leads us to view the well-
known U(1) ⊗ SU(3) symmetry of the harmonic oscillator as the basic sym-
metry of Nature. In Section 4 we linearise the relevant phase space invari-
ants á la Dirac and discuss the extension of the U(1) ⊗ SU(3) symmetry of
phase space into the space of the relevant Clifford algebra. This leads to the
appearance of threefold-degenerate fractional eigenvalues for the U(1) gen-
erator, and the appearance of a Gell-Mann–Nishijima–Glashow-like relation.
The connection between the fractional eigenvalues of the U(1) generator and
the rishon model of Harari is also established.

2. Particles and antiparticles without relativity

The purpose of this section is to show that the existence of the two-
valued particle–antiparticle degree of freedom can be ascertained in a purely
nonrelativistic framework, as mentioned in [5].

We will follow the approach of Dirac closely. Our aim is to linearise the
bilinear form p2 − 2mE which vanishes when (kinetic) energy E is given by
the relevant nonrelativistic expression (see also [6]). Let us write

Θ ≡ p2 − 2mE = L′L , (1)

and attempt to linearise this form á la Dirac by writing (summation over
repeated indices implied; we use k, l,m, n running from 1 to 3)

L = αkpk + µm + νE , (2)

L′ = α′
kpk + µ′m + ν ′E , (3)

and seeking αk, µ, ν, (α′
k, µ′, ν ′) that would satisfy condition (1). As in the

case of the original derivation of Dirac, we must search for a solution among
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the 4×4 matrices, since within the space of Hermitean 2×2 matrices there is
no matrix available that would anticommute with all three Pauli matrices. It
is straightforward to see that the following expressions constitute a solution
meeting our condition (with αk, β being standard Dirac matrices):

L(β) = α · p + (1 + β)
m

m0
+ (1 − β)

m0

2
E , (4)

L′(β) = α · p − (1 − β)
m

m0
− (1 + β)

m0

2
E , (5)

where m0 is an arbitrary positive factor. Since the relative sign with which β
enters into the second and third term vanishes after evaluating L′(β)L(β) =
L(β)L′(β) = p2 − 2mE, the following expressions also constitute a solution:

La(β) = α · p + (1 − β)
m

m0
+ (1 + β)

m0

2
E , (6)

L′
a(β) = α · p − (1 + β)

m

m0
− (1 − β)

m0

2
E , (7)

as we clearly have La(β)L′
a(β) = L′

a(β)La(β) = p2 − 2mE. Note that
under operation m0 → −m0 expressions L(β), L′(β)) turn into L′

a(β),
La(β). Thus, if one admits negative m0, Eqs. (6), (7) are already included
in Eqs. (4), (5).

Let us assume that solution L(β) corresponds to particles. In order to
see that solution La(β) corresponds to antiparticles, we shall now try to im-
plement the operation of charge conjugation. We shall follow the traditional
procedure with one necessary change, as explained below. This procedure
consists of the following steps:

1. Consider operator L(β) supplemented with minimal electromagnetic
coupling:

L(β, e) = α · (p − eA) + (1 + β)
m

m0
+ (1 − β)

m0

2
(E − eA0) . (8)

2. Take “complex conjugation” of L(β, e). This complex conjugation re-
places operators p and E with −p and −E, leaving e, A , A0 un-
changed. In addition, in order to keep p2 − 2mE invariant, one must
replace m with −m. This is the additional requirement that must be
added in order to keep the invariance of the nonrelativistic formula
relating energy to mass and momentum. It is also the condition neces-
sary for the form-invariance of operator p2−2mE under time reversal,
i.e. for viewing antiparticles as particles “moving backwards in time”.
It suggests that m is actually an operator. Thus, one gets

L∗(β, e) = α∗(−p− eA)− (1 + β)
m

m0
+ (1−β)

m0

2
(−E − eA0) . (9)



Space, Phase Space and Quantum Numbers of Elementary Particles 2057

3. Now take matrix C = −iσ2 ⊗ σ2 = −C−1 and transform −L∗(β, e)
with its help:

C(−L∗(β, e)C−1 =α·(p+eA)+(1−β)
m

m0
+(1+β)

m0

2
(E+eA0) . (10)

The last equation constitutes a solution meeting our original requirement
(it corresponds directly to operator La(β) given in Eq. (6) or L′(β) for
negative m0), and describes objects with opposite charges, i.e. antiparticles.
The transition from particles to antiparticles may be obtained simply by
reversing the signs of β and of charge e, i.e. L(β, e) → L(−β,−e). In this
way, from Eqs. (4), (8) one obtains Eqs. (6), (10).

In conclusion, the existence of the particle–antiparticle degree of freedom
may be established using purely nonrelativistic reasoning. Irrelevance of
Lorentzian relativity was stressed also in Ref. [7], where the existence of an-
tiparticles was inferred under more fully fledged Galilean invariance. Thus,
we repeat the statement made in the introduction: all of those quantum
numbers of elementary particles for which a connection with the properties
of macroscopic space is known are related to the description of phenomena
at a nonrelativistic level. Consequently, it is natural to assume that also
other observed quantum numbers of elementary particles may be deduced
via a nonrelativistic reasoning. We are thus entitled to study a purely non-
relativistic approach.

3. Phase space and its symmetries

As stressed in [4, 5], the symmetry of the observed three-dimensional
macroscopic world (i.e. group O(3) of transformations leaving r2 (or p2)
form-invariant, which includes proper rotations and reflections) is closely
connected with quantum numbers characterising elementary particles such
as spin and parity. Ref. [5] argues then at length that instead of the three-
dimensional coordinate–space-based description, one should adopt a descrip-
tion in which momenta and positions are treated on a more equal footing.
Similar ideas were advocated in the past e.g. by Born, whose point of
view concerning the properties of particles and the emergence of mass is
well described by the following quote from [8] (in this quote, Born talks
about the values of P ≡ E2 − p2, R ≡ t2 − x2 for individual particles):
“It looks, therefore, as if the distance P in momentum space is capable
of an infinite number of discrete values which can be roughly determined
while the distance R in coordinate space is not an observable at all. This
lack of symmetry seems to me very strange and rather improbable.” Bas-
ing on such ideas, Born suggested that the “reciprocity” transformations, i.e.
p′ = x and x′ = −p, under which various basic equations of classical physics
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remain invariant, should play an important role. Invariance under reci-
procity transformations suggests the introduction of a new physical con-
stant, κ, of dimension [g s−1] (or [GeV/c fm−1] when units used in particle
physics are chosen). The actual value of κ is irrelevant for the purposes of
the present paper. (However, when κ is specified, its value and that of the
Planck’s constant ~ together define “natural units” in position and momen-
tum spaces.) The physical position x[x], where the subscript [x] indicates
that position is measured in such standard units of distance as meters or
their derivatives (eg. fm ), is then related to x through x ≡ x[p] = κx[x],
with subscript [p] denoting that position is expressed in units of momentum.

A natural framework in which momentum and positions are treated in
a fully symmetric way as mutually independent variables, is the nonrelativis-
tic Hamiltonian formalism with phase space as the arena of classical events.
When the phase–space-based description is admitted, it is further natural
to combine the two invariants of momentum space and position space into
a single invariant, in which momentum and position coordinates are treated
in a completely symmetrical way. This singles out the form p2 + x2 and
admits other transformations besides the proper rotations and reflections.
These other transformations include transformations in which momentum is
transformed into position and vice versa, but in a more general fashion than
that allowed for by Born’s reciprocity transformations.

When of all transformations which keep p2 + x2 form-invariant one ad-
mits only those that keep the Poisson brackets unchanged, the relevant
group of transformations turns out to be U(1)⊗ SU(3) [5]. By moving
from the 3-dimensional description in the configuration space (x1, x2, x3) to
the 6-dimensional description in phase–space (z1, z2, . . . , z6) ≡ (x1, x2, x3,
p1, p2, p3) = (x,p), we “expand” O(3) to U(1)⊗ SU(3). Thus, U(1)⊗ SU(3)
defines an “ideal figure” in phase space. The U(1) factor takes care of reflec-
tions (p′ = −p, x′ = −x) and Born’s reciprocity transformations (p′ = x,
x′ = −p), the former being the squares of the latter; while the SU(3) group
constitutes an extension of the group of proper rotations, where the latter
are understood as simultaneous rotations of p and x.

Present-day Standard Model of elementary particles is a gauge theory
based on group U(1)⊗ SU(3)⊗ SU(2)L. There are two ingredients here:
the group structure and the gauge principle. The latter leads to dynam-
ics. In this paper we will be interested in the symmetry aspects only. The
question how to introduce dynamics in the phase–space language will be
put aside. However, some hints exist. For example, in the phase–space
formulation of Ref. [9] canonical reciprocity transformations are used to de-
scribe a minimally coupled particle in a “magnetic” field in one-dimensional
space. This seems to suggests that our U(1)⊗ SU(3) could be related to the
U(1)Y⊗ SU(3)C symmetry of the Standard Model.
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In Ref. [5] we started with the classical description, in which momenta
and positions were c-numbers. Below, we will treat them as operators which
satisfy the standard commutation rules of quantum mechanics. Although
from the technical point of view the following part of this section deals with
the well-known U(3) symmetry properties of the three-dimensional harmonic
oscillator, it is needed here as it provides the background for the subsequent
section. Consider therefore, the operator

p2 + x2 , (11)

where pk and xk are Hermitean operators of momentum and position. Stan-
dard commutation relations between position and momentum coordinates
[x[x],m, p[p],n] = i~ δmn or, equivalently, [x[p],m, p[p],n] = i~ κ δmn may be
brought to a dimensionless form [xm, pn] = iδmn by an appropriate choice
of x and p:

x =
1√
~κ

x[p] =

√

κ

~
x[x] ,

p =
1√
~κ

p[p] . (12)

Consequently, position x and momentum p operators used in the whole re-
maining part of this paper (and the operator of Eq. (11)) are dimensionless.
Their eigenvalues correspond to numerical values of position and momen-
tum coordinates when the latter are expressed in terms of “natural” units
in position (

√

~/κ) and momentum (
√

~κ) spaces. The corresponding phys-
ical quantities in standard units i.e. x[x] and p[p] may be recovered from

Eq. (12). Let us denote:

ak =
1√
2
(xk + ipk) ,

a†k =
1√
2
(xk − ipk) , (13)

with am, a†n and xn, pm satisfying standard commutation rules:
[

am, a†n

]

= δmn ,
[

am , an

]

= 0 ,
[

a†m, a†n

]

= 0 ,

[xm, pn] = iδmn , [xm, xn] = 0 , [pm, pn] = 0 . (14)

We have

x2 + p2 = (xk − ipk) (xk + ipk) − i [xk, pk]

= (xk + ipk) (xk − ipk) + i [xk, pk] . (15)
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There are two Hermitean invariants of U(1) ⊗ SU(3):

a†kak =
1

2

(

x2 + p2 + i (x · p − p · x)
)

, (16)

aka
†
k =

1

2

(

x2 + p2 − i (x · p − p · x)
)

, (17)

or, alternatively:

{ak, a
†
k} = x2 + p2 ,

[ak, a
†
k] = −i [x,p] = 3 . (18)

They are quantised, with the eigenvalues of x2 + p2 being 2N + 3
(N = 0, 1, 2, 3, . . .).

3.1. Generalised reciprocity — the U(1) factor

The condition that p2+x2 and −i [x,p] = 3 are to be invariant under the
transformations of the symmetry group means that p2 +x2 has to commute
with all the generators of this group. Consequently, one of these generators
must be proportional to p2 +x2 itself. Up to a positive factor, there are two
possible choices of a Hermitean generator:

Rz ≡
(

p2 + x2
)

= {ak, a
†
k} =

3
∑

k=1

Rz
k , (19)

with (no sum)

Rz
k ≡ {ak, a

†
k} , (20)

or Rz ′ = −Rz. We shall see later how these two possibilities may be com-
bined. The superscript z means that the corresponding operator is expressed
in terms of phase–space variables z1,...,6, or z ≡ (x,p), i.e. through xk and

pk, or ak and a†k.
For Rz we have

[Rz, xk] = −2ipk , [Rz, pk] = +2ixk , (21)

[Rz, ak] = −2ak ,
[

Rz, a†k

]

= +2a†k , (22)

and for general transformations:

a′k = exp(iφ
2 Rz)ak exp(−iφ

2 Rz) = e−iφak ,

a′k
† = exp(iφ

2 Rz)a†k exp(−iφ
2 Rz) = e+iφa†k , (23)
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with φ defined as the common angle of three identical simultaneous rotations
in each of the (xk, pk) planes. The above transformations of operators ak

and a†k are overall U(1) phase transformations.
For φ = ±π we have

a′k = −ak , a′k
† = −a†k , (24)

i.e. we obtain reflection x → x′ = −x, p → p′ = −p.
For φ = −π/2 (and similarly for φ = +π/2) we have

a′k = iak , a′k
† = −ia†k , (25)

i.e. we get Born’s reciprocity transformation: x→x′=−p, p→p′=x, which
constitutes a “square root” of the standard reflection, as its two consecutive
applications yield x → x′′ = −p′ = −x, p → p′′ = x′ = −p. In summary,
Rz is the generator of generalised reciprocity transformations.

3.2. Generalised rotation — the SU(3) factor

In the standard discussion of the SU(3) properties of the three-dimensional
harmonic oscillator, one introduces nine shift operators

Hz
kl = 1

2 {ak, a
†
l } , (26)

(i.e. Rz
k = 2Hz

kk, no sum), satisfying:

[Hz
kl, a

†
n] = δkna†l ,

[Hz
kl, an] = −δlnak . (27)

The eight Hermitian operators of SU(3) are then:

F z
1 = Hz

12 + Hz
21 = a†2a1 + a†1a2 ,

F z
2 = i(Hz

12 − Hz
21) = i(a†2a1 − a†1a2) ,

F z
3 = Hz

11 − Hz
22 = a†1a1 − a†2a2 ,

F z
4 = Hz

31 + Hz
13 = a†1a3 + a†3a1 ,

F z
5 = i(Hz

13 − Hz
31) = −i(a†1a3 − a†3a1) ,

F z
6 = Hz

23 + Hz
32 = a†3a2 + a†2a3 ,

F z
7 = i(Hz

23 − Hz
32) = i(a†3a2 − a†2a3) ,

F z
8 = 1√

3
(Hz

11 + Hz
22 − 2Hz

33) = 1√
3
(a†1a1 + a†2a2 − 2a†3a3) . (28)
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When expressed in terms of operators pk and xk, the above equations
read:

F z
1 = p1p2 + x1x2 ,

F z
2 = +L3 = x1p2 − x2p1 ,

F z
3 =

1

2
(x 2

1 + p 2
1 − x 2

2 − p 2
2 ) ,

F z
4 = p3p1 + x3x1 ,

F z
5 = −L2 = −(x3p1 − x1p3) ,

F z
6 = p2p3 + x2x3 ,

F z
7 = +L1 = x2p3 − x3p2 ,

F z
8 = 1

2
√

3
(x 2

1 + p 2
1 + x 2

2 + p 2
2 − 2x 2

3 − 2p 2
3 ) . (29)

As before, the superscript z is used to denote (x,p) jointly: F z
b ≡ F

(x,p)
b ,

and it reminds us that we are dealing with the representation of SU(3) in

terms of momentum and position (or ak and a†k) operators. Thanks to the
commutation relations of Eq. (14), the order of operators xk and pm (ak and

a†m) on the r.h.s of Eq. (29) is irrelevant.
The nine shift operators may be decomposed in a spherical basis as:

Hz
kl =

1

3
Hz

mmδkl +
1

2
(Hz

kl − Hz
lk) +

(

1

2
(Hz

kl + Hz
lk) −

1

3
Hz

mmδkl

)

, (30)

with the first term constituting the trace-only part and equal to

1

2

Rz

3
δkl , (31)

the second term being antisymmetric and equal to

− i

2
eklmLm , (32)

and the third term forming the symmetric traceless part.
It is straightforward to check that

8
∑

b=1

(F z
b )2 =

1

3
(Rz)2 − 3 . (33)

Thus, the eigenvalues of Rz determine the eigenvalues of the SU(3) invariant
∑8

b=1(F
z
b )2 to be 4N(1 + N/3) (N = 0, 1, 2, 3, . . .).
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The above generators F z
a (we use a, b, c running from 1 to 8) satisfy

standard SU(3) commutation rules

[Fa, Fb] = 2ifabcFc , (34)

with the antisymmetric structure constants fabc equal to: 1 for abc = (123)
(where (123) denotes cyclic permutations of 123); 1

2 for abc = (147), (165),

(246), (257), (345), (376);
√

3
2 for abc = (458), (678); and zero otherwise.

This corresponds to the defining standard matrix representation of SU(3)
generators given for example in [10] (our Fb’s are equal to λb’s of [10]).

When the SO(3) transformation properties of ak and a†k are extended to

SU(3), the two sets of operators (ak and a†k) transform under SU(3) in two
inequivalent ways, i.e. as a triplet and an antitriplet. Denoting

a =





a1

a2

a3



 (a†)T =







a†1
a†2
a†3






(35)

the relevant commutation relations take the form

[F z
b ,a] = −Fba , (36)

[

F z
b , (a†)T

]

= +F ∗
b (a†)T . (37)

Since Fb = −F ∗
b only for b = 2, 5, 7, it follows that only under the trans-

formations generated by F z
2 , F z

5 , F z
7 the two sets of operators (ak and a†k)

transform in the same way. With F z
2 ≡ L3, F z

5 ≡ −L2, F z
7 ≡ L1, we obtain

identical transformations of operators ak and a†k (alternatively: momentum
and position) under SO(3):

[Lk, al] = i eklm am ,
[

Lk, a
†
l

]

= i eklm a†m ,

[Lk, xl] = i eklm xm , [Lk, pl] = i eklm pm , (38)

with the generators of the SO(3) rotation subgroup of SU(3) satisfying stan-
dard commutation rules:

[Lk, Ll] = i eklm Lm . (39)

On the other hand, while for b = 1, 3, 4, 6, 8 the fifteen commutators of
F z

b with xk are:

[F z
1 , x2] = [F z

3 , x1] = [F z
4 , x3] =

√
3 [F z

8 , x1] = −ip1 ,

[F z
1 , x1] = − [F z

3 , x2] = [F z
6 , x3] =

√
3 [F z

8 , x2] = −ip2 ,

[F z
4 , x1] = [F z

6 , x2] = −
√

3

2
[F z

8 , x3] = −ip3 ,

[F z
1 , x3] = [F z

3 , x3] = [F z
4 , x2] = [F z

6 , x1] = 0 , (40)
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the corresponding fifteen commutators of F z
b with pk are obtained from the

above equations by interchanging pk with xk and replacing −i by i, i.e.:

[F z
1 , p2] = [F z

3 , p1] = [F z
4 , p3] =

√
3 [F z

8 , p1] = ix1 ,

[F z
1 , p1] = − [F z

3 , p2] = [F z
6 , p3] =

√
3 [F z

8 , p2] = ix2 ,

[F z
4 , p1] = [F z

6 , p2] = −
√

3

2
[F z

8 , p3] = ix3 ,

[F z
1 , p3] = [F z

3 , p3] = [F z
4 , p2] = [F z

6 , p1] = 0 . (41)

Born’s reciprocity transformations (i.e. x → x′ = −p, p → p′ = x)
interchange the above two sets of the commutators of F z

1,3,4,6,8 with xk and

pk, e.g. [F z
3 , p1] = +ix1 → [F ′z

3 , x′
1] = [F z

3 , x′
1] = −ip′1. (One has F ′z

b = F z
b

since reciprocity transformations commute with the SU(3) generators.)
When we restrict our considerations to the SU(3) transformations only,

we observe that they distinguish between the momentum and the position
coordinates (i.e. the two sets of commutators above, Eqs. (40), (41), differ
in the sign in front of i). The SU(3) transformations of Eqs. (40), (41)
are more general than the SO(3) ones, and they do permit some pk ↔ xl

transformations. However, the SU(3) transformations never permit the full
exchange of p into x and vice versa. This is embodied in the structure of
the commutation relations of Eqs. (40), (41) above. Full interchange of the
role of x and p requires consideration of the reciprocity transformations.

This feature of SU(3) transformations was exploited in [5] when propos-
ing a generalisation of the concept of mass. Namely, it was pointed out
there that energy of free particles, whether given by a relativistic or non-
relativistic formula, is always given in terms of mass and momentum, never
in terms of mass and position. In fact, this was essentially Born’s remark.
In other words, it was observed in [5] that the standard concept of mass
may be said to be directly associated with the concept of momentum p, not
position x. Then, Ref. [5] uses SU(3) to propose a generalisation of this
association of mass with momentum.

Let us recall briefly the spirit of the argument of [5]. According to [5],
before the concept of mass is introduced there is no difference between the
momentum and position coordinates. Thus, the unknown mechanism gener-
ating particle masses must somehow divide the six-dimensional object x⊕p

into a pair of canonically conjugated 3-dimensional variables, of which only
one is associated with the concept of mass. However, such a division may
proceed in four typical ways, namely:
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“canonical position“ “canonical momentum“

(x1, x2, x3) (p1, p2, p3) (42)

and

(x1, p2, p3) (p1, x2, x3)

(p1, x2, p3) (x1, p2, x3)

(p1, p2, x3) (x1, x2, p3) . (43)

Thus, according to the proposal of [5], the concept of mass may be associ-
ated not only with the division of Eq. (42) and the canonical momentum
being the standard momentum (p1, p2, p3), but also with the remaining three
possibilities of Eqs. (43) with canonical momenta involving one component
of “standard momentum” and two components of “standard position”. Each
of the three additional choices clearly violates ordinary rotational invari-
ance (translational invariance might be satisfied by admitting position dif-
ferences only). Thus, if there are objects for which mass is/would be linked
to generalised momenta as in Eq. (43), they cannot belong — as individ-
ual objects — to our classical macro-world, since the latter is rotationally
invariant. However, these objects could belong to the macro-world as unsep-
arable components of composite objects, provided the latter are constructed
in such a way as to satisfy all the necessary invariance conditions.

4. Linearisation

As hinted above and discussed at length in [5], when the choice of what
is considered to be a “momentum” is generalised according to the require-
ments of the SU(3) symmetry, it follows that the basic inputs of present
theories, which are based on the direct association of the concept of mass
with standard momentum, should be appropriately generalised. In particu-
lar, this should concern the Dirac Hamiltonian, in which no SU(3) “x ⊕ p”
symmetry is seen: when Dirac Hamiltonian is written in the momentum
representation, it is completely oblivious to space and time.

In the following, we shall linearise the p2+x2 form á la Dirac, as proposed
in [5], and discuss the structure obtained and its symmetries at some length.
In order to achieve this linearisation, we have to enlarge the Dirac matrices
by doubling their size and introducing

Ak = σk ⊗ σ0 ⊗ σ1 ,

Bk = σ0 ⊗ σk ⊗ σ2 ,

B = σ0 ⊗ σ0 ⊗ σ3 . (44)
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The above matrices satisfy the conditions:

AkAl + AlAk = 2δkl ,

AkBl + BlAk = 0 ,

BkBl + BlBk = 2δkl ,

AkB + BAk = 0 ,

BkB + BBk = 0 ,

BB = 1 . (45)

Matrices Ak,B (or Bk,B) satisfy standard anticommutation relations of
Dirac matrices αk, β. Matrix B = iA1A2A3B1B2B3 is the seventh anti-
commuting matrix of the relevant Clifford algebra. Perhaps it might be
somehow related to mass terms, as the nonrelativistic version of the Dirac
equation suggests. However, as stressed in [5], we do not know how to intro-
duce the generalised concept of mass into the present approach in any other
way than through symmetry arguments based on an analogy with the way
in which the concept of mass enters in standard approaches. Rather, it is
the other way round, i.e. it is hoped that after the present approach is de-
veloped sufficiently far, it will provide us with some ideas on the mechanism
of mass generation. Consequently, for the purposes of the present paper,
we will restrict ourselves to the algebra/geometry of the x ⊕ p phase space
alone, without writing in an explicit way how mass enters into the game.

Linearisation of form p2 + x2 suggests that we square

A · p + B · x , (46)

as is certainly appropriate when x and p commute. Assuming that both A

and B commute with both p and x, we then have

(A · p+B · x)(A · p+B · x)=(p2+x2)σ0 ⊗ σ0 ⊗ σ0+σk ⊗ σk ⊗ σ3 . (47)

The first term on the right-hand side above is clearly U(1)⊗ SU(3) invariant.
The second term, whose appearance is due to the nonvanishing of commu-
tators [xk, pk] (k = 1, 2, 3), is also invariant under U(1)⊗ SU(3) transforma-
tions, as we shall explicitly see in the following.

The operation of charge conjugation consists in particular of the following
substitutions [5]:

i → −i ,

p → p′ = −p ,

x → x′ = +x ,
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A → A′ = CA∗C−1 = A ,

B → B′ = CB∗C−1 = B ,

B → B′ = CB∗C−1 = −B , (48)

with C = −iσ2⊗σ2⊗σ2 = −C−1. After the transformation, Eq. (47) reads:

(−A · p + B · x)(−A · p + B · x) = (p2 + x2) σ0 ⊗ σ0 ⊗ σ0

−σk ⊗ σk ⊗ σ3 . (49)

For antiparticles, therefore, the sign of the last term above is reversed.
Since in the discussions of phase–space properties, in addition to xk and

pk one uses the concept of operators ak and a†k, it is natural to introduce
their analogs in matrix space, namely:

Ck =
1√
2
(Bk + iAk) ,

C†
k =

1√
2
(Bk − iAk) . (50)

In terms of Ck and C†
k, the relevant anticommutation relations of Eqs. (45)

read:

{Ck, Cl} = {C†
k, C

†
l } = 0 ,

{Ck, C
†
l } = {C†

k, Cl} = 2δkl ,

{Ck, B} = {C†
k, B} = 0 . (51)

4.1. U(1) transformations

The generic linearised expression (46) is form-invariant under the reci-
procity transformations, understood here as the following simultaneous
transformations of momenta p, positions x, and matrices A, B:

xk → x′
k = −pk , pk → p′k = xk ,

Bk → B′
k = −Ak , Ak → A′

k = Bk . (52)

It is also invariant under U(1) (generalised reciprocity) transformations act-
ing simultaneously on x,p and B,A. In the space of matrices A and B,
the counterpart of Eq. (19) is:

Rσ =

3
∑

k=1

Rσ
k = − i

2
[Ak, Bk] = −1

2

[

Ck, C
†
k

]

= (σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3) ⊗ σ3 , (53)
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with (no sum)
Rσ

k ≡ σk ⊗ σk ⊗ σ3 , (54)

and we have the following analogs of Eqs. (21), (22):

[Rσ, Bk] = −2iAk , [Rσ, B] = 0 , [Rσ, Ak] = +2iBk . (55)

[Rσ, Ck] = −2Ck ,
[

Rσ, C†
k

]

= +2C†
k . (56)

The superscript σ is used to denote that the corresponding operator is rep-
resented in terms of tensor products of matrices σk. The r.h.s of Eq. (47) is
just total R:

R = Rz 1̂ + Rσ , (57)

(with 1̂ = σ0 ⊗ σ0 ⊗ σ0, which shall be omitted from now on), i.e. it is the
sum of U(1) generators in respective spaces. Both terms on the r.h.s. of
Eq. (47) are thus clearly invariant under U(1) transformations.

In addition to Rσ, we shall also consider

Y ≡ Y σ =
1

3
RσB , (58)

and

Y z =
1

3
RzB . (59)

The operator Y z = 1
3RzB is twice the trace-only part of the spherical de-

composition of Eq. (30) multiplied by matrix B. Since the eigenvalues of B
are ±1, the two options for the generator discussed earlier (i.e. Rz and −Rz)
are in this way combined.

We have

Y =
3

∑

k=1

Yk =
3

∑

k=1

yk ⊗ σ0 = y ⊗ σ0 , (60)

with (no sum)

Yk = yk ⊗ σ0 =
1

3
σk ⊗ σk ⊗ σ0 , (61)

y =
1

3
(σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3) , (62)

satisfying
[Y,Rσ] = [Y,B] = [Yk, R

σ] = [Yk, B] = 0 . (63)

One finds that y satisfies the following equation:

3y2 + 2y − σ0 ⊗ σ0 = 0 . (64)
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Therefore, the eigenvalues of y are +1/3 and −1.
Since

[y, yk] = [yk, yl] = [Y, Yk] = [Yk, Yl] = 0 , (65)

for any k, l, it follows that y, y1, y2, y3 (Y, Y1, Y2, Y3) can be simultaneously
diagonalized. For any k, the eigenvalues of σk ⊗σk (no sum) are ±1, whence
the eigenvalues of yk (Yk) are ±1/3. The eigenvalue of y equal to +1/3 is
obtained three times, and the eigenvalue of −1 once, as shown in Table I.
For Y, Yk the relevant pattern is doubled.

TABLE I

Structure of eigenvalues of y and yk.

y1 y2 y3 y

− 1

3
+ 1

3
+ 1

3
+ 1

3

+ 1

3
− 1

3
+ 1

3
+ 1

3

+ 1

3
+ 1

3
− 1

3
+ 1

3

− 1

3
− 1

3
− 1

3
−1

Since Rσ
k = 3yk ⊗ σ3 and Rσ = 3y ⊗ σ3, the eigenvalues of Rσ

k are
±1, while those of Rσ are ±1, ±3. Thus, there is an essential difference
between the eigenvalues of Rz (which is constructed from x and p), and
the eigenvalues of its matrix counterpart Rσ, which together add up to the
operator of total generalised reciprocity R = Rz + Rσ. Namely, we observe
that among the eigenvalues of Rσ we have not only ±3, which are actually
the lowest eigenvalues for ±Rz, but also ±1. This resembles somewhat
the situation for the total angular momentum J , which is composed of the
orbital angular momentum and spin: J = L + S. Indeed, for the orbital
angular momentum (constructed from x and p) we have L = 0, 1, 2, 3, . . .,
which does not admit half-integer spin values S = 1/2, 3/2, . . . obtained from
matrix representations only.

4.2. SU(3) transformations

In analogy to the shift operators Hz
kl of the previous section, we introduce

Hσ
kl = −1

4
[Ck, C

†
l ] , (66)

satisfying the analogues of Eqs. (27):

[Hσ
kl, C

†
n] = δknC†

l , [Hσ
kl, Cn] = −δlnCk . (67)
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Then, SU(3) generators are represented by:

F σ
1 = Hσ

12 + Hσ
21 = − i

4
([A1, B2] + [A2, B1]) ,

F σ
2 = i(Hσ

12 − Hσ
21) = − i

4
([A1, A2] + [B1, B2]) ,

F σ
3 = Hσ

11 − Hσ
22 = − i

4
([A1, B1] − [A2, B2]) ,

F σ
4 = Hσ

13 + Hσ
31 = − i

4
([A1, B3] + [A3, B1]) ,

F σ
5 = i(Hσ

13 − Hσ
31) = − i

4
([A1, A3] + [B1, B3]) ,

F σ
6 = Hσ

23 + Hσ
32 = − i

4
([A2, B3] + [A3, B2]) ,

F σ
7 = i(Hσ

23 − Hσ
32) = − i

4
([A2, A3] + [B2, B3]) ,

F σ
8 = 1√

3
(Hσ

11+Hσ
22−2Hσ

33) =− i

4
√

3
([A1,B1]+[A2,B2]−2 [A3,B3]) . (68)

As before, the nine matrices Hσ
kl may be decomposed as follows:

Hσ
kl = 1

3Hσ
mmδkl + 1

2 (Hσ
kl − Hσ

lk) +
(

1
2 (Hσ

kl + Hσ
lk) − 1

3Hσ
mmδkl

)

, (69)

with

1
3Hσ

mmδkl = − 1
12

[

Cm, C†
m

]

δkl = − i
12 [Am, Bm]δkl = 1

2
Rσ

3 δkl (70)

being the trace-only part,

1
2(Hσ

kl − Hσ
lk) = −1

8

([

Ck, C
†
l

]

−
[

Cl, C
†
k

])

= − i
2 eklmSm (71)

constituting the antisymmetric part with Sm being spin generators

Sk = − i
8ekmn ([Am, An] + [Bm, Bn]) = 1

2 (σk ⊗ σ0 + σ0 ⊗ σk) ⊗ σ0 (72)

satisfying standard relations

[Sk, Sm] = i ekmnSn , (73)

and the rest, i.e.

−1
8

([

Ck, C
†
l

]

+
[

Cl, C
†
k

])

+ 1
12

[

Cm, C†
m

]

δkl , (74)

being the symmetric traceless part.
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Below we list explicit expressions for all SU(3) generators:

F σ
1 = 1

2 (σ1 ⊗ σ2 + σ2 ⊗ σ1) ⊗ σ3 ,

F σ
2 = +S3 = 1

2 (σ3 ⊗ σ0 + σ0 ⊗ σ3) ⊗ σ0 ,

F σ
3 = 1

2 (σ1 ⊗ σ1 − σ2 ⊗ σ2) ⊗ σ3 ,

F σ
4 = 1

2 (σ3 ⊗ σ1 + σ1 ⊗ σ3) ⊗ σ3 ,

F σ
5 = −S2 = −1

2 (σ2 ⊗ σ0 + σ0 ⊗ σ2) ⊗ σ0 ,

F σ
6 = 1

2 (σ2 ⊗ σ3 + σ3 ⊗ σ2) ⊗ σ3 ,

F σ
7 = +S1 = 1

2 (σ1 ⊗ σ0 + σ0 ⊗ σ1) ⊗ σ0 ,

F σ
8 = 1

2
√

3
(σ1 ⊗ σ1 + σ2 ⊗ σ2 − 2σ3 ⊗ σ3) ⊗ σ3 . (75)

Linear expression (46) is invariant both under U(1) transformations
Eqs. (21), (22), (55), (56):

[Rz+Rσ, (Bk+iAk)(xk−ipk)]=[Rz+Rσ, (Bk−iAk)(xk+ipk)] = 0 (76)

and under SU(3) transformations. Its SU(3) invariance is particularly trans-
parent when Eq. (46) is rewritten as

1
2 ((Bk + iAk)(xk − ipk) + (xk + ipk)(Bk − iAk)) = Cka

†
k + akC

†
k . (77)

Under SU(3) transformations,matrices Bk andAk transform like xk and pk of

Eqs. (38), (40), (41), Ck = 1√
2
(Bk + iAk) behaves like ak, while C†

k =

1√
2
(Bk − iAk) like a†k, i.e. they transform like a triplet and an antitriplet of

SU(3) (see Eqs. (36), (37)). Under standard rotations, Ak and Bk transform
like momentum and position (c.f. Eq. (38)), while B is a scalar:

[Sk, Am] = i ekmlAl , [Sk, Bm] = i ekmlBl , [Sk, B] = 0 . (78)

With (A · p + B · x) being SU(3) invariant, its square is also SU(3)
invariant and, consequently, both the Rz = p2+x2 and the Rσ = σk⊗σk⊗σ3

terms on the r.h.s. of Eq. (47) are SU(3) invariant. The latter is thus clearly
a singlet of SU(3). Explicitly, in the matrix space, the representations of the
U(1) and SU(3) generators commute as they should:

[F σ
b , Rσ] = 0 . (79)

Using the expressions of Eq. (75) for the F σ
b , one calculates that

8
∑

b=1

(F σ
b )2 = 4(1 + y) ⊗ σ0 = 4(1 + Y ) ≡ 6(1 − Y )(1 + Y ) , (80)
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(where the last equality uses 3Y 2 +2Y − 1 = 0 of Eq. (64)), to be compared
with

8
∑

b=1

(F z
b )2 = 3(Y z + 1)(Y z − 1) . (81)

The two eigenvalues of Y label the representations of SU(3) within the Clif-
ford algebra. For the eigenvalue of Y = −1 we get F 2 = 0, i.e. an SU(3)
singlet, while for the eigenvalue of Y = +1/3 we get F 2 = 16/3, i.e. an
SU(3) triplet.

Apart from F σ
b , we may consider also the following eight matrices F̃b:

F̃ σ
b = F σ

b for b = 2, 5, 7 , (82)

F̃ σ
b = F σ

b B = BF σ
b for b = 1, 3, 4, 6, 8 . (83)

As the SU(3) structure constants fabc are nonzero only when none or two of
indices a, b, c take their values from the second group above, and moreover
B2 = 1, it follows that F̃ σ

b satisfy the standard SU(3) commutation relations
as well.

4.3. Gell-Mann–Nishijima–Glashow relation

With Y = −1 corresponding to SU(3) singlet and Y = +1/3 correspond-
ing to SU(3) triplet, it is tempting to identify Y with the weak hypercharge
quantum number Y appearing in the classification of leptons (Y = −1) and
three-coloured quarks (Y = +1/3).

Let us now introduce operator Q defined as

Q = 1
6(Rz + Rσ)B = 1

2 (Y z + Y ) . (84)

The above operator constitutes the trace-only part of total shift operators
Hz

kl + Hσ
kl multiplied by B. It clearly commutes with the original form

p2 +x2. For the lowest eigenvalue of Rz (equal to +3) we have Y z = B, i.e.

Q = 1
2(B + Y ) , (85)

which, upon introducing

I3 ≡ 1
2B = 1

2σ0 ⊗ σ0 ⊗ σ3 (86)

may be rewritten as

Q = I3 +
Y

2
. (87)

Thus, for Y = −1 we obtain integer values Q = 0,−1 (each value once),
while for Y = +1/3 we get fractional values Q = +2/3,−1/3 (each value
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three times), exactly as needed for the description of electric charges of one
generation of leptons and three-coloured quarks.

The application of charge conjugation yields

Y → Y ′ = CY ∗C−1 = Y ,

B → B′ = CB∗C−1 = −B . (88)

Now, the sign of charge is defined relative to the A · p term. Consequently,
as under charge conjugation we have A · p → A′ · p′ = −A · p, we obtain
opposite values of Ya = −Y for antiparticles as needed for the description of
antileptons (Y = +1) and antiquarks (Y = −1/3), while I3 = Ba/2 = B/2
is left unchanged. This reversal of the sign of the effective values of Y under
particle–antiparticle conjugation can be seen also directly from Eq. (49),
which reads:

R′ = Rz − Rσ . (89)

Consequently, for antiparticles we obtain:

Qa = I3 +
Ya

2
, (90)

with Ya = +1 and −1/3. Hence, proper values of antilepton and anti-
quark charges follow. I believe that the emergence of relation (87), (90)
which mimics the Gell-Mann–Nishijima–Glashow relation [11], with Y be-
ing a weak hypercharge and I3 — the third component of weak isospin, is
not accidental.

The SU(2) counterparts of generator I3, i.e. Ik = 1
2σ0 ⊗σ0 ⊗σk (k=1,2)

commute with Y . However, they do not commute with the generators of the
original SU(3). In fact, of all 64 elements of the relevant Clifford algebra
only the unit element and the three elements: Y , B = 2I3, and Rσ = 3Y B =
3BY commute with all nine generators Rσ, F σ

b . Instead, the Ik (k = 1, 2, 3)

commute with the modified S̃U(3) generated by F̃ σ
b . Now, in the scheme

considered, I3 is proportional to the reflection operator. Indeed: generalised
reciprocity transformations in matrix space follow from the analog of Eq. (23)
in which Rz is replaced with Rσ, etc. Born’s reciprocity transformation Rσ

is then obtained by setting φ = −π/2:

Rσ ≡ exp
(

−i
π

4
Rσ

)

=
1

2
√

2
(1 − iB)(1 + 3Y ) , (91)

and the full reflection Pσ is

Pσ = (Rσ)2 = −iB . (92)



2074 P. Żenczykowski

Thus, while the generators of U(1) and SU(3) (or S̃U(3)) commute with
the reflection operator, this is not true for the SU(2) generators I1,2. Bear-
ing in mind that in our world parity is violated, I consider this an attrac-
tive feature of the approach. Clearly, it would also be interesting to see
what is the precise connection (if any) between the above derivation of the
Gell-Mann–Nishijima–Glashow relation and the general ideas of [5] and
Eqs. (42), (43).

The way in which total hypercharge Y is built out of Yk exhibits a
strict correspondence to the rishon model of leptons and quarks [12]. In
that model, neutrino νe is constructed from three electrically neutral ris-
hons V as V V V , while up quarks uR, uG, uB are built from one rishon
V and two rishons T of charge Q(T ) = +1/3 each, as V TT , TV T , TTV .
Furthermore, electron e− is built as T̄ T̄ T̄ , while down quarks dR, dG, dB

are constructed as T̄ V̄ V̄ , V̄ T̄ V̄ , V̄ V̄ T̄ . If one assigns hypercharge values to
rishons as Y (V ) = −1/3, Y (T ) = +1/3 (corresponding to rishon charges
Q(V ) = 1/6 + Y (V )/2 = 0 and Q(T ) = 1/6 + Y (T )/2 = +1/3 as in [12])
one reproduces Table I.

4.4. Second invariant

Eq. (77) exhibits two U(1) ⊗ SU(3) invariant terms:

(Bk − iAk)(xk + ipk) ,

(Bk + iAk)(xk − ipk) , (93)

combined to form a Hermitean expression A · p + B · x. The two terms
of Eq. (93) may be combined to form a second U(1) ⊗ SU(3) invariant
Hermitean expression:

i

2
((Bk+iAk)(xk−ipk)−(xk+ipk)(Bk−iAk))=−A · x+B · p . (94)

The existence of the two invariants of Eq. (93) is directly related to the

existence of two U(1) ⊗ SU(3) invariant Hermitean expressions: a†kak and

aka
†
k of Eqs. (16), (17). These two Hermitean expressions lead to Eq. (93)

upon the substitution of the first factor in Eq. (16) (i.e. a†k) with Bk − iAk,
and the first factor in Eq. (17) (i.e. ak) with Bk + iAk. Although p ·p+x ·x
and −i (x · p − p · x) do not look akin to each other, their linearised forms,
obtained by replacing left p with A and left x with B, are just Eqs. (77),
(94) and look much more similar.

Squaring “−A · x + B · p” leads to an analog of Eq. (47)

(−A·x+B ·p)(−A·x+B ·p) = (x2+p2)σ0⊗σ0 ⊗ σ0+σk⊗σk⊗σ3 , (95)
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in which the r.h.s. is completely identical with the r.h.s. in Eq. (47). Chang-
ing the sign of x above will again lead, in accordance with the prescription
for charge conjugation, to a different sign of the second term on the right-
hand side.

Transformations between the two U(1) ⊗ SU(3) invariant structures of
Eqs. (77), (94) may be obtained by a formal application of reciprocity trans-
formation in only one of the two spaces involved, i.e. either in the phase–
space or in the matrix space. In addition to Eqs. (47), (95), we have (see
Table II for partial results):

{A · p + B · x ,−A · x + B · p} = 0 . (96)

Thus, the anticommutators of A · p + B · x, and −A · x + B · p lead either
to an extension of invariant p2 + x2 into matrix space or to zero. Likewise,
the commutators of A · p + B · x, and −A · x + B · p yield either zero or
the extension of the invariant x · p − p · x, i.e.:

[A ·p+B ·x,−A ·x+B ·p] = 2(x ·p−p ·x)+2i(3Y zY σ +2F z
b F σ

b ) . (97)

TABLE II

Commutators [X, Y ] and anticommutators {X, Y } for X, Y = A · p, B · x, B · p,
and A · x. Entries for anticommutators are given along the diagonal and above it;
entries for commutators — below the diagonal.

X\Y A · p B · x B · p A · x

A · p 2p2 − i

2
[An, Bn] 0 {xk, pk}

B · x − 1

2
[Ak, Bn]{xn, pk} 2x2 {xk, pk} 0

B · p −[Ak, Bn]pkpn −3i − 1

2
[Bn, Bk]{xn, pk} 2p2 + i

2
[An, Bn]

A · x +3i + 1

2
[An, Ak]{xn, pk} +[Ak, Bn]xkxn + 1

2
[An, Bk]{xn, pk} 2x2

5. Summary

We argued that nonrelativistic phase space constitutes a natural choice
in the search for a space-related origin of quantum numbers of elementary
particles and we studied the consequences of this choice somewhat further.
Thus, our results follow from geometry of nonrelativistic phase space. We
exploited the fact that invariance of the form x2 +p2 (assumed to be funda-
mental), and of the standard commutation relations, selects U(1) ⊗ SU(3)
as the symmetry group. We linearised the fundamental form á la Dirac and
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represented the U(1) ⊗ SU(3) transformations in the relevant Clifford alge-
bra. The eigenvalues of the U(1) generator Y in this algebra were shown to
be ±(+1/3,+1/3,+1/3,−1). We proposed to identify this generator with
weak hypercharge Y in the Standard Model of elementary particles. We
showed that the generator of total U(1) transformations contains additive
contributions from the phase space and the Clifford algebra and leads to
a relation, which we proposed to identify with the Gell-Mann–Nishijima–
Glashow formula Q = I3 + Y/2. Connections between the fractional Y
eigenvalues and the rishon model of Harari were established.

I would like to thank Andrzej Horzela for his positive reaction to my
ideas.

REFERENCES

[1] For a critique, see: R. Penrose, The Emperor’s New Mind, Oxford University
Press, 1989; P. Woit, Not Even Wrong, Jonathan Cape, London 2006.

[2] R. Penrose, Structure of Spacetime, in Batelle Rencontres, Eds. C.M. DeWitt
and J.A. Wheeler, New York 1968, p. 121; R. Penrose, Angular Momentum:
an Approach to Combinatorial Spacetime in Quantum Theory and Beyond,
Ed. T. Bastin, Cambridge University Press, Cambridge 1971, p. 151.

[3] J.A. Wheeler, From Relativity to Mutability, in The Physicist’s Conception of
Nature, Ed. J. Mehra, D. Reidel, Holland, Dordrecht 1973, pp. 227, 235.

[4] P. Żenczykowski, Int. J. Theor. Phys. 29, 835 (1990).

[5] P. Żenczykowski, Concepts of Physics III, 263 (2006).

[6] J.M. Lévy-Leblond, Galilei Group and Galilean Invariance in Group Theory
and its Applications, vol. II, Ed. E.M. Loebl, Academic Press, New York 1971,
pp. 221–299.

[7] A. Horzela, E. Kapuścik, Electromagnetic Phenomena 3, 63 (2003).

[8] M. Born, Rev. Mod. Phys. 21, 463 (1949).

[9] C. Zachos, T. Curtright, Prog. Theor. Phys. Suppl. 135, 244 (1999).

[10] W.-M. Yao et al., J. Phys. G33, 1 (2006).

[11] S.L. Glashow, Nucl. Phys. 22, 579 (1961).

[12] H. Harari, Phys. Lett. B86, 83 (1979).


