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The medium dependence of nuclear interactions is described by an ef-
fective Lagrangian characterized by density dependent meson nucleon cou-
plings. The density dependence of the coupling parameters of the σ, ω, δ,
and ρ mesons is deduced by reproducing the nucleon self-energy resulting
from the relativistic Brueckner–Hartree–Fock approach at each density for
symmetric and asymmetric nuclear matter. The inclusion of the density de-
pendent isovector mesons couplings, δ and ρ, affects the density and charge
distributions of finite nuclei. The results are discussed and compared with
experimental data and with results from similar approaches.
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1. Introduction

The relativistic Brueckner–Hartree–Fock theory (RBHF) is generally ac-
cepted as one of the most reliable and feasible microscopic methods for the
description of effective interactions in the nuclear medium [1,2].

Attempts have been made to calculate finite nuclei using effective meson
nucleon interactions, deduced from the RBHF self-energy. Density depen-
dent σ and ω meson couplings were derived from RBHF calculations using
the Bonn A, B, and C potentials [1, 2] by reproducing the nucleon self-
energies resulting from the RBHF at each density [3]. The parametrizations
of Ref. [3] have been used in Ref. [4] in a fully covariant approach to a den-
sity dependent hadron field theory. They have been successfully used in
the description of the properties of spherical nuclei [4], deformed nuclei [5],
hypernuclei [6], neutron star matter [7], and exotic nuclei [8]. But they were
unable to account for binding energies and deformations of typical deformed
nuclei, including rare-earth nuclei and nuclei in the actinide region of special
importance for nuclear applications [5].
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In order to obtain a better quantitative description of nuclear properties,
phenomenological interactions with explicit density dependence of the me-
son nucleon couplings have been adjusted to the properties of nuclear matter
and finite nuclei [9, 10]. They have been successfully applied in the calcula-
tions of spherical and deformed nuclei [11], and ground state properties of
rare-earth nuclei [12]. An alternative way, which is directly related to the un-
derlying microscopic description of nuclear interaction, would be to extend
the parametrization of the density dependence of coupling parameters to
include isovector δ and ρ mesons couplings. Refs. [13,14] extend the RBHF
calculations of Ref. [2] to the case of asymmetric nuclear matter, providing
the nucleon self-energy at each density for different proton fractions.

This work refines and extends the parametrization given in Ref. [3] for
the RBHF Bonn A potential by including also the isovector mesons δ and
ρ, in order to completely reproduce the RBHF results of Refs. [13, 14] for
the nucleon self-energy at each density for symmetric and asymmetric nu-
clear matter. Section 2 reviews the general theory of an effective one-boson-
exchange (OBE) Lagrangian and the resulting nucleon self-energy. Section 3
presents a new parametrization of the density dependent coupling parame-
ters of the isoscalar mesons σ and ω and the isovector mesons δ and ρ. And
the coefficients of this parametrization are adjusted to the outcome for the
nucleon self-energy of the RBHF treatment of symmetric and asymmetric
nuclear matter of Refs. [13, 14]. The relativistic Thomas–Fermi approach
with density dependent coupling parameters RDTF is used in Section 4
to analyze the effects of the inclusion of the density dependent isovector
mesons couplings on the results for finite nuclei in a first test of the new
parametrization. The main conclusions are summarized in the last section.

2. General theory

A standard one-boson-exchange (OBE) Lagrangian with four mesons:
the isoscalar scalar meson σ, the isoscalar vector meson ω, the isovector
scalar meson δ, and the isovector vector meson ρ, is used

L = ψ
[

iγµ∂µ −mN − gσσ − gωγ
µωµ − gδ ~τ · ~δ

−gρ ~τ · γ
µ~ρµ −
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with Ωµν = ∂µων − ∂νωµ , (2)

~R µν = ∂µ~ρ ν − ∂ν~ρ µ , (3)

Fµν = ∂µAν − ∂νAµ . (4)

The baryons, protons and neutrons, are represented by Dirac spinors ψ =

(ψp, ψn). σ, ωµ, ~δ, and ~ρµ are the fields of the different mesons. e is the
proton charge and Aµ the electromagnetic field. mN is the nucleon mass.
mi and gi (i = σ, ω, δ, ρ) are the mass and the coupling parameter of the
i-meson. γµ are the Dirac γ matrices, ~τ is the isospin vector, and τ3 its third
component, equal to +1 for protons and −1 for neutrons.

In addition to the σ, ω, and ρ mesons, the isovector scalar meson δ is
included, which is necessary to reproduce the results of the RBHF nuclear
matter calculations in the general case of different proton and neutron densi-
ties [15]. Significant scalar strength in the isovector channel has been found,
which can be interpreted as an effective δ meson, which couples as strongly
as the effective isovector vector ρ meson [15–17].

The nucleon self-energy in nuclear matter takes in the relativistic mean
field approximation RMF [18] the form

Σ = Σs + γ0Σ0 , (5)

and is determined by the contributions of the four mesons included in the
Lagrangian

Σsp,sn = Σσ
s ±Σδ

s (6)

= −
g2
σ

m2
σ

(ρsp + ρsn) ∓
g2

δ

m2

δ

(ρsp − ρsn) ,

Σ0p, 0n = Σω
0 ±Σρ

0
(7)

= −
g2
ω

m2
ω

(ρp + ρn) ±
g2
ρ

m2
ρ

(ρp − ρn) ,

where p, n denote protons and neutrons, respectively, and the upper signs
correspond to protons and the lower to neutrons. ρ is the density and ρs the
scalar density.

3. Density dependent coupling parameters

The structure of the nucleon self-energy in nuclear matter used in RBHF
has the form (5). RBHF calculations provide Σsp, Σsn, Σ0p, and Σ0n at
various proton and neutron densities, or equivalently, at various densities
ρ = ρp + ρn and asymmetry parameter values β. The asymmetry parameter
β is defined as
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β =
ρn − ρp

ρn + ρp
. (8)

The easiest access to density dependent coupling parameters is obtainable
by utilizing the functional form of the nucleon self-energy given in Eqs. (5)–
(7). Density and asymmetry dependent coupling parameters are calculated
from the RBHF results for the nuclear matter self-energy via

ΣRBHF

sp (ρ, β) +ΣRBHF

sn (ρ, β) = −2
g2
σ(ρ, β)

m2
σ

(ρsp + ρsn) , (9)

ΣRBHF

sp (ρ, β) −ΣRBHF

sn (ρ, β) = −2
g2

δ (ρ, β)

m2

δ

(ρsp − ρsn) , (10)

ΣRBHF

0p (ρ, β) +ΣRBHF

0n (ρ, β) = 2
g2
ω(ρ, β)

m2
ω

(ρp + ρn) , (11)

ΣRBHF

0p (ρ, β) −ΣRBHF

0n (ρ, β) = 2
g2
ρ(ρ, β)

m2
ρ

(ρp − ρn) , (12)

where ΣRBHF
sp (ρ, β) denotes the RBHF result for Σsp at the density ρ and

the asymmetry value β, etc. Eqs. (9)–(12) define the density and asymmetry
dependent coupling parameters gi(ρ, β) (i = σ, ω, δ, ρ).

Some references like Ref. [4] define also a so called scalar density depen-
dence approach SDD, where the coupling parameters of the scalar mesons
σ and δ depend on the scalar densities ρsp and ρsn instead of the densities
ρp and ρn, while the approach of Eqs. (9)–(12) is called the vector density
dependence approach (VDD). The results of these references are in favor
of the VDD [4], and the VDD provides a more natural relation between
the density dependent coupling parameters and the RBHF microscopic self-
energies [8]. The RBHF treatment calculates the self-energy at given values
of the densities ρp and ρn [2]. Therefore, this work is restricted to the def-
inition of the density and asymmetry dependent coupling parameters given
by Eqs. (9)–(12).

This work utilizes the RBHF results of Refs. [13, 14], which use the pa-
rameters of the OBE potential Bonn A of Refs. [1, 2]. The RBHF results
for symmetric nuclear matter (ρp = ρn) given in Ref. [2] for the Bonn A
potential have been already used in Ref. [3] to define density dependent
coupling parameters for the isoscalar mesons σ and ω. Refs. [13, 14] extend
the RBHF calculations of Ref. [2] to the case of asymmetric nuclear matter,
which provides Σsp, Σsn, Σ0p, and Σ0n at various proton and neutron den-
sities. Therefore, it is necessary to extend the parametrization of Ref. [3] to
include also the isovector mesons δ and ρ in order to completely reproduce
the RBHF results of Refs. [13,14]. Four mesons are needed to reproduce the
four self-energy components, see Eqs. (9)–(12).
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Refs. [13,14] use the approximation that the self-energy components are
momentum independent, though this momentum dependence is included in
the calculations of the RBHF equations. This approximation is extremely
good for nucleons up to slightly above the Fermi momentum [19,20]. Ref. [8]
introduces momentum corrected nucleon–meson vertices, adjusted to repro-
duce the RBHF equation of state. The procedure to determine the mo-
mentum correction is not unique [8, 15]. And since this work utilizes the
RBHF results of Refs. [13, 14], it uses the approximations done there, i.e.,
momentum independent self-energy components in Eqs. (9)–(12).

Analyzing the RBHF results of Refs. [13, 14] and others [8], one recog-
nizes that for asymmetry parameter β values between 0 and 0.4 and except
at small densities, the dependence of the RBHF self-energy on the asymme-
try in the isoscalar channel (σ, ω) is negligible. In the isovector channel (δ, ρ)
the dependence on the asymmetry is mainly given by the terms (ρsp − ρsn)
and (ρp − ρn) on the right-hand side of Eqs. (10) and (12), respectively,
while the dependence of gδ and gρ on the asymmetry is negligible. The
Brueckner scheme is an intermediate density approximation, losing its phys-
ical significance at low densities because the Brueckner independent pair
assumption becomes questionable. And β varies between 0 and 0.25 in the
case of finite nuclei. Therefore, the coupling parameters are chosen to de-
pend only on the total density ρ and not on the asymmetry value β, i.e.,
gi = gi(ρ) (i = σ, ω, δ, ρ).

Density dependent coupling parameters of the isoscalar mesons are in-
troduced by

gi(ρ)

gi(ρ0)
− 1 = ai

(

exp

[

bi

(

1 −

(

ρ

ρ0

)1/3)]

− 1

)

i = σ, ω , (13)

where ρ0 is the saturation density and ai, bi, and gi(ρ0) are the coefficients of
the density dependent function gi(ρ). Expanding the exponential function
up to the quadratic term, one recovers the polynomial expansion around the
saturation density ρ0 used in Ref. [3], but the exponential function omits the
instabilities resulting from the use of the polynomial expansion at high den-
sities, where the polynomial expansion becomes infinite. At high densities
gi(ρ) approaches the finite value (1−ai)gi(ρ0) (i = σ, ω). Density dependent
coupling parameters of the isovector mesons are introduced by

gi(ρ) = gi(ρ0) exp

[

bi

(

1 −
ρ

ρ0

)]

i = δ, ρ , (14)

which is the form suggested by RBHF calculations of asymmetric nuclear
matter [15, 16].
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The parametrization provided by Eqs. (13)–(14) has the advantage that
one obtains the density dependence of the coupling parameters over a wide
range in a simple manner, and avoids the ambiguities of the RBHF treatment
at lower densities.

The coefficients ai, bi, and gi(ρ0) (i = σ, ω) are adjusted to the outcome
of the RBHF calculations of symmetric nuclear matter, and the coefficients bi
and gi(ρ0) (i = δ, ρ) to the outcome of the RBHF calculations of asymmetric
nuclear matter at the value β = 0.2 for the asymmetry parameter, i.e., at
proton fraction 0.4. The resulting density dependent parametrization of the
RBHF potential Bonn A is called D(A) in order to distinguish it from the
RBHF potential itself. The coefficients of the parametrization D(A) are
given in Table I.

TABLE I

The density dependent parameter set D(A). mi is the mass of the i-meson. ai,
bi, and gi(ρ0) are the coefficients of the parametrization of the density dependent
coupling parameters (i = σ, ω, δ, ρ). mN = 938.926MeV is the average nucleon
mass used by Ref. [2] and ρ0 = 0.185fm−3 is the saturation density resulting from
the RBHF potential Bonn A [2].

Meson i σ ω δ ρ

mi (MeV) 550 782.6 983 769

gi(ρ0) 9.297 11.269 4.701 2.370

ai 0.2941 0.3451

bi 2.217 2.113 1.223 1.634

The massesmN , mσ, mω, mδ, andmρ and the saturation density ρ0 are those
of the Bonn A potential. Figure 1 illustrates the dependency of the coupling
parameters on density. Values resulting from Eqs. (9)–(12) for several den-
sities are inserted by small diamonds in figure 1 in order to demonstrate the
quality of the fitting procedure. In the case of symmetric nuclear matter,
the nucleon self-energy is reproduced with an accuracy of more than 99%
for densities up to twice the saturation density, see gσ(ρ) and gω(ρ) in fig-
ure 1. In the case of asymmetric nuclear matter the reproduction is of such a
high accuracy only for densities up to slightly above the saturation density,
see gδ(ρ) and gρ(ρ) in figure 1. The repulsive contribution of the ρ meson
changes to an attractive contribution at densities higher than the saturation
density, i.e., the left-hand side of Eq. (12) becomes negative leading to an
imaginary value of gρ. And the decrease of the δ meson coupling with in-
creasing density is much slower than the exponential decrease at densities
up to slightly above the saturation density, Eq. (14), leading to a negative
effective mass of the neutron at higher densities. These obstacles in extract-
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ing the effective coupling parameters of isovector mesons can be dealt with
within the RBHF approach, see Ref. [17], and do not occur when using the
parametrization given by Eq. (14).
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Fig. 1. Coupling parameters of the mesons σωδρ of the effective interaction D(A)

of Table I as functions of the density. Marked points are the values that reproduce

the exact RBHF results of Refs. [13, 14].

Table II compares the saturation properties of symmetric nuclear matter
resulting from the parametrization D(A) of Table I with those from the
RBHF potential Bonn A [2] and from the polynomial parametrization of
Ref. [3] for the Bonn A potential. The nucleon effective mass is given by

Mp,n = mN +Σsp,sn , (15)

and is the same for protons and neutrons in the case of symmetric matter.
B/A is the saturation binding energy per nucleon. The parametrization
D(A) reproduces the nuclear matter saturation properties of the RBHF
treatment better than the polynomial parametrization of Ref. [3]. Fig-
ure 2 shows the nuclear matter equation of state resulting from the D(A)
parametrization at three different values of the asymmetry parameter β.
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TABLE II

Saturation properties of symmetric nuclear matter resulting from the parametriza-
tion D(A), from the polynomial parametrization of Ref. [3] for the Bonn A potential,
and from the RBHF treatment utilizing the Bonn A potential [2].

D(A) Ref. [3] RBHF [2]

ρ0 (1/fm3) 0.179 0.170 0.185

B/A (MeV) 15.60 15.80 15.59

M/mN 0.602 0.618 0.601
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Fig. 2. Nuclear matter equation of state resulting from the D(A) parametrization

at different values of the asymmetry parameter β. E is the energy.

4. Finite nuclei

In this section, the relativistic Thomas–Fermi approach with density
dependent coupling parameters RDTF is used to analyze the effects of the
inclusion of the density dependent isovector mesons couplings, δ and ρ, on
the results for finite nuclei in a first test of the D(A) parametrization. A
detailed derivation of the RDTF system of coupled equations can be found,
for instance, in Ref. [21]. The charge density is calculated by folding the
proton density with a Gaussian representing the charge distribution of the
proton [22]. The rms charge radius of the proton being 0.8 fm. A center of
mass correction −T/A is subtracted from the total binding energy, where T
is the kinetic energy and A is the mass number.

Table III compares the results for doubly magic nuclei utilizing the D(A)
parametrization of Table I with the results of the similar approaches of
Refs. [8, 16] using the RBHF Bonn A [2] and Groningen [23] potentials and
with experimental data. Refs. [8, 16] use relativistic mean field theory with
density dependent coupling parameters. Ref. [8] uses the parametrization
of Ref. [3] for the Bonn A potential, which includes isoscalar mesons only.
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Ref. [16] introduces density dependent couplings into the calculations of fi-
nite nuclei by a local density and asymmetry estimation based directly on
RBHF nuclear matter results, i.e., no parametrization is used. The experi-
mental data are those used in Ref. [9].

TABLE III

Binding energies per particle and rms charge radii of doubly magic nuclei for the
D(A) parametrization of Table I in comparison with the results of the similar
approaches of Refs. [8, 16] utilizing the RBHF Bonn A and Groningen potentials
and with experimental data.

16O 40Ca 48Ca 208Pb

D(A) B/A (MeV) 8.29 8.70 9.23 8.41

rch (fm) 2.77 3.48 3.47 5.49

Bonn A 8.58 9.02 8.96 8.17

[8] 2.75 3.46 3.49 5.53

Bonn A 7.01 7.54 7.18 6.20

[16] 2.61 3.31 3.35 5.33

Groningen 5.65 5.96 6.09 5.28

[8] 2.76 3.47 3.48 5.49

Exp. 7.98 8.55 8.67 7.87

2.73 3.49 3.48 5.51

In order to analyze the effects of the inclusion of the density depen-
dent isovector mesons couplings on the results for finite nuclei, Table IV
compares the results utilizing the D(A) parametrization with all mesons in-
cluded (σωδρ) with the results with only isoscalar mesons (σω). For the
symmetric nuclei 16O and 40Ca inclusion of the isovector mesons increases
the proton rms radii and decreases the neutron rms radii, while for the
asymmetric nuclei 48Ca and 208Pb the effect is reversed, proton rms radii
decrease and neutron rms radii increase by inclusion of the isovector mesons.
It should be noted that only with the isovector mesons included one obtains
rch(48Ca) < rch(40Ca). The inclusion of the isovector mesons δ and ρ has
almost no effect on binding energies in the case of symmetric nuclei, while
increases binding energies of asymmetric nuclei.
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TABLE IV

Binding energies per particle, rms charge, proton, and neutron radii, and neu-
tron skin thicknesses of doubly magic nuclei. Table compares results utilizing the
D(A) parametrization with all mesons included (σωδρ), with the results with only
isoscalar mesons (σω), and with available experimental data.

16O 40Ca 48Ca 208Pb

σωδρ B/A (MeV) 8.292 8.699 9.227 8.414
rch (fm) 2.765 3.477 3.468 5.489

rp (fm) 2.647 3.383 3.374 5.430

rn (fm) 2.567 3.247 3.569 5.559

t (fm) −0.080 −0.136 0.195 0.129

σω B/A 8.286 8.684 9.053 8.103

rch 2.747 3.445 3.491 5.496

rp 2.628 3.351 3.399 5.437

rn 2.581 3.268 3.549 5.549

t −0.047 −0.084 0.150 0.111

Exp. B/A 7.976 8.551 8.667 7.868

rch 2.730 3.485 3.484 5.505

The effect of the inclusion of the density dependent isovector mesons
couplings on the charge density distributions is small, and is even smaller on
neutron density and total density distributions, as can be seen in Figs. 3–5
for the 208Pb nucleus.
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Fig. 3. Effect of the inclusion of the density dependent isovector mesons couplings

on the charge density distribution of 208Pb. The solid curve represents the result

with all mesons included and the dashed curve with only isoscalar mesons.
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Fig. 4. Neutron density distribution of 208Pb. Labeling as in Fig. 3.
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Fig. 5. Total density distribution of 208Pb. Labeling as in Fig. 3.

5. Summary

Density dependent coupling parameters of the σ, ω, δ, and ρ mesons are
deduced from the RBHF nucleon self-energy.

A parametrization of the density dependence is derived, which repro-
duces the self-energy of symmetric nuclear matter with high accuracy for
densities up to twice the saturation density, and the self-energy of asymmet-
ric nuclear matter up to slightly above the saturation density.

As one would expect, the inclusion of the isovector mesons δ and ρ affects
symmetric and asymmetric nuclei differently. For the symmetric nuclei 16O
and 40Ca it increases the proton rms radii and decreases the neutron rms
radii, while for the asymmetric nuclei 48Ca and 208Pb the effect is reversed.
One result is that the rms charge radius of 48Ca becomes smaller than the
rms charge radius of 40Ca.
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