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We formulate an approximate relativistic framework for an analysis of
the ~3He(~e, e′p)pn and ~3He(~e, e′n)pp reactions. Restricting the rescattering
series to one term linear in the two-nucleon (2N) t-matrix we incorporate
various relativistic features when calculating a nuclear current matrix el-
ement. These relativistic ingredients encompass the relativistic 3He wave
function based on the concept of the Lorentz boosted nucleon–nucleon po-
tential together with the boosted 2N t-matrix, relativistic kinematics and
relativistic single-nucleon current operator. This allows us to estimate the
magnitude of certain relativistic effects not included in the standard non-
relativistic approach. A more complete inclusion of relativity would require
that the current operator obeys the covariance equations and the final three-
nucleon (3N) scattering state with complete final state interactions (FSI)
should be properly boosted. We provide some discussion on those issues.
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1. Introduction

Modern three-body calculations allow for a quantitative description of
the 3N system not only in the bound state [1] but also for the continuum
states (see for example [2, 3]). This gives the possibility to test our un-
derstanding of the three-body system via interactions with external probes.
Among many processes which can be listed here, electron scattering on 3He
is of special importance [4, 5]. This process serves as a rich source of infor-
mation about the nucleon form factors [6–9] and important properties of the
3He nucleus [10–12].

Electron induced breakup of 3He involves many components of the dy-
namical scenario. Among them the initial 3He and final scattering states
must be calculated consistently for the same 3N Hamiltonian comprising
not only 2N but also 3N forces. Consequently, also many-body currents
consistent with those forces should be taken into account. We refer the
reader to [4] for a detailed discussion of the numerical techniques necessary
to perform calculations of this reaction. Currently this can be done only non-
relativistically, which is a major restriction and leads to serious difficulties
in interpretation of many experiments performed at high energy and mo-
mentum transfers. Due to large differences between the nonrelativistic and
relativistic kinematics an analysis of such experiments cannot be undertaken
within a strictly nonrelativistic framework.

We are not aware of any consistent, relativistic 3N scattering calculation.
Also in the present paper we report about a less rigorous approach to the

description of the ~3He(~e, e′p)pn and ~3He(~e, e′n)pp processes. This approach
does not include all final state interactions (FSI) among the three outgoing
nucleons but restricts the rescattering to only one “spectator” pair of nu-
cleons which is assumed not to take part in the photon absorption. There
are definitely kinematical regions where such a reaction mechanism seems to
be plausible. Furthermore, this approximation was used successfully in the
analysis of many experiments (see for example [9, 13]).

We would like to add to this treatment of electron induced breakup of
3He new truly relativistic features. We continue work started in [14], where
first steps to extend the Hamiltonian scheme in equal time formulation to
3N scattering were made. To this aim the Lorentz boosted nucleon–nucleon
(NN) potential which generates the NN T -matrix in a moving frame via a
standard Lippmann–Schwinger equation was calculated and applied to the
3N bound state problem. In the present paper we show how to obtain the
(antisymmetric) 3N relativistic wave function and formulate an approximate
framework which can be used as a practical tool for an analysis of exper-
imental results, for example in quasi-elastic reactions at high energy and
momentum transfers.
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We give the reader a detailed derivation of our formalism in Section 2.
Section 3 shows our results for the semi-exclusive three-body breakup of
3He. Important missing features required for a more complete treatment of
relativity are indicated in Section 4 and illustrated in the Appendix. We
end with a brief summary in Section 5.

2. Theory

Before we remind the reader of the most important ideas about the
Lorentz boosted NN potential, it seems appropriate to start with the well
known nonrelativistic concepts.

The nonrelativistic 2N bound state | ψ
(nr)
b 〉 obeys the equation

| ψ
(nr)
b 〉 = G

(nr)
0 v(nr) | ψ

(nr)
b 〉 , (1)

where v(nr) is the nonrelativistic NN potential and G
(nr)
0 is the nonrelativis-

tic 2N free propagator. This can be written in the 2N center of mass (c.m.)
frame by projecting onto the eigenstate of relative momentum |~p > (~p and
−~p are then the individual nucleon momenta)

ψ
(nr)
b (~p ) =

1

Mb − 2m− ~p 2/m

∫

d3p′ v(nr)(~p, ~p ′)ψ
(nr)
b (~p ′) . (2)

Here Mb is the 2N bound state rest mass and m is the nucleon mass. The
corresponding Lippmann–Schwinger equation

t(nr) = v(nr) + t(nr)G
(nr)
0 v(nr) (3)

for the t-matrix t(nr) takes in the momentum space the following form

t(nr)(~p, ~p ′ ) = v(nr)(~p, ~p ′ ) +

∫

d3p ′′ t
(nr)(~p, ~p ′′)v(nr)(~p ′′, ~p ′ )

Enr
12 − ~p ′′ 2/m+ iε

, (4)

where Enr
12 is the nonrelativistic 2N c.m. kinetic energy. The Galilean invari-

ance of the nonrelativistic scenario guarantees that the relative momentum
and Eqs.(1)–(4) remain frame independent.

On the other hand, a relativistic NN potential v(rl) defined in the 2N
c.m. system appears in the relativistic bound state equation

| ψ
(rl)
b 〉 = G

(rl)
0 v(rl) | ψ

(rl)
b 〉 , (5)

and in the relativistic form of the Lippmann–Schwinger equation

t(rl) = v(rl) + t(rl)G
(rl)
0 v(rl) . (6)
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In the momentum space spanned by eigenstates of the 2N c.m. relative
momentum ~p the Eqs. (5) and (6) can be written as

ψ
(rl)
b (~p) =

1

Mb − ω(~p )

∫

d3p′ v(rl)(~p, ~p ′ )ψ
(rl)
b (~p ′ ) (7)

and

t(rl)(~p, ~p ′ ) = v(rl)(~p, ~p ′ ) +

∫

d3p ′′ t
(rl)(~p, ~p ′′ )v(~p ′′ , ~p ′ )

E rl
12 − ω(~p ′ ) + iε

, (8)

where

ω(~p) ≡ 2
√

m2 + ~p 2 (9)

and the relativistic 2N c.m. energy is denoted by E rl
12.

A Lorentz boosted nucleon–nucleon potential V (~q ) was introduced in
[15,16] in order to generalize the concept of the relativistic potential for 2N
systems with the non-zero total momentum ~q. It is formally defined via

V (~q ) ≡

√

[

ω(~p ) + v(rl)
]2

+ ~q 2 −
√

(ω(~p ))2 + ~q 2 (10)

and by construction fulfills V (~q = 0) = v(rl). The non-trivial task of obtain-
ing matrix elements V (~p, ~p ′; ~q ) for arbitrary ~q was accomplished in [14].

With use of the boosted potential, the equation for the relativistic 2N
bound state moving with the total momentum ~q reads

ψ
(rl)
b (~p ) =

1
√

M2
b + ~q 2 −

√

ω(~p ) 2 + ~q 2

∫

d3p′ V (~p, ~p ′ ; ~q )ψ
(rl)
b (~p ′) , (11)

so the boosted potential allows us to preserve the same structure of the

equation as in (2) and (7). Note that ψ
(rl)
b (~p) appearing in Eqs. (7) and (11)

are identical, i.e. the wave function is represented in a way, which does not
depend on ~q. This is possible because the relative momenta ~p and ~p ′ in
both cases are defined in the 2N c.m. system.

A formalism for treating the relativistic three-body Faddeev equations
was introduced in [15–17]. Since the formal structure of the 3N Hamiltonian

H = H0 +
∑

i<j

Vij , (12)

with Vij being the boosted two-body force and H0 the relativistic 3N kinetic
energy, is the same for relativistic and nonrelativistic approaches, the formal
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derivation of the Faddeev equations is also the same in both cases [16].
Thus the Faddeev component | Φ〉 of the 3N relativistic wave function | Ψ〉
generated by interaction V in the 2N subsystem obeys

| Φ〉 = G0 T P | Φ〉 , (13)

where T is the Lorentz boosted T -matrix generated by potential V , G0 is
the relativistic 3N free propagator and P is a permutation operator which
accounts for the fact that we treat nucleons as identical particles. It is
given in terms of the transposition Pij interchanging nucleons “i” with “j”:
P ≡ P12P23 + P13P23. The wave function | Ψ〉 follows from the Faddeev
component via

| Ψ〉 = (1 + P ) | Φ〉 . (14)

We would like to remark that our ~q is the relative momentum of the
spectator in the three-body rest frame. This is to be distinguished from
another choice, where ~q is the spectator momentum in any frame. This
would lead to a different two-body interaction. With our choice the Poincare
generators satisfy the correct commutation relations without the need of an
additional three-body interaction. In the second case an additional three-
body force is required to recover the commutation relations.

In [16] the boosted T -matrix is constructed from the relativistic 2N
t-matrices of Eq. (8) in a quite complicated way. Since we have now the
Lorentz boosted potential V (~q ) at our disposal, we can obtain the boosted
(off-shell) T -matrix directly via the Lippmann–Schwinger equation which,
when written in the 3N c.m. system, takes the form

T (~p, ~p ′ ; ~q ) = V (~p, ~p ′ ; ~q )

+

∫

d3p ′ ′ T (~p, ~p ′′ ; ~q )V (~p ′ ′, ~p ′ ; ~q )

E3N −
√

m2 + q2 −
√

ω(~p ′′) 2 + ~q 2 + iε
, (15)

where E3N is the total energy of the 3N system and ~q is the momentum of
the spectator nucleon (−~q is then a total momentum of the 2N subsystem).
Due to the following observation, Eq. (15) can be solved as easily as Eq. (4).
Namely defining

fq(p) ≡

√

E3N −
√

m2 + q2 +
√

4m2 + 4p2 + q2

4m
, (16)

v(~p, ~p ′ ; ~q) ≡ fq(p)V (~p, ~p ′; ~q) fq(p
′ ) , (17)

t(~p, ~p ′ ; ~q) ≡ fq(p)T (~p, ~p ′ ; ~q) fq(p
′ ) (18)
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and

p2
0 ≡

1

4

(

(

E3N −
√

m2 + q2
)2

− 4m2 − q2
)

(19)

we arrive at

t(~p, ~p ′ ; ~q ) = v(~p, ~p ′ ; ~q ) +

∫

d3p ′′ t(~p, ~p
′′ ; ~q ) v(~p ′ ′, ~p ′ ; ~q )
p2

0

m
− ~p ′′ 2

m
+ iε

. (20)

This looks like a nonrelativistic Lippmann–Schwinger equation (4) and can
be solved by the same techniques. Once this equation is solved, Eq. (18) is
used to get the T (~p, ~p ′ ; ~q ) matrix elements. Note that p2

0 in (20) might be
in a general case also negative.

As shown in [14] one needs matrix elements of the relativistic potential
v(rl) in order to obtain V (~p ′, ~p ; ~q). The boosted potential is then given by the
NN bound state wave function and the half-shell NN t-matrices obtained in
the 2N c.m. system. The only requirement on v(rl) is that it should describe
properly existing 2N data set. It is possible to construct v(rl) directly (see for
example [18]) or start with a particular modern nonrelativistic potential v(nr)

and apply a scale transformation from [19] to generate a phase equivalent
relativistic potential v(rl). This second method was criticized in [20] but
nevertheless it remains a possibility for practical calculations. Since the
general expression for boosted potential V (~p, ~p ′ ; ~q) given in [14] is quite
complicated it is desirable to find an approximation simplifying numerical
calculations. A simple choice is a restriction to the leading order term in
a q/ω and v/ω expansion

V (~p, ~p ′ ; ~q) ≈ v(rl)(~p, ~p ′)

(

1 −
~q 2

2ω(~p )ω(~p ′ )

)

, (21)

what turned out to be sufficient for a wide range of | ~q | values [21] (see also
[22]). Such an approximation results in a moving deuteron wave function,
a binding energy and S- and D-state probabilities very close to the ones for
the deuteron at rest.

In a recent paper [23] an alternative way to arrive directly at the boosted
NN t-matrix is given. This is without approximation and appears easy to be
implemented. Unfortunately, we got aware of that paper only after finishing
this study.

We have now all ingredients to write Eq. (13) in the momentum space.
It reads in the 3N c.m. system [15–17]

Φ(~p, ~q) =
1

Eb − E(~p, ~q)

∫

d3q ′
Ta(~p, ~π(~q ′,−~q − ~q ′); ~q )

N (~q ′,−~q − ~q ′ )N (−~q − ~q ′, ~q )

×Φ(~π(−~q − ~q ′, ~q ), ~q ′) , (22)
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where Eb is the 3N binding energy and the index “a” in the boosted T -matrix
indicates that it is the properly antisymmetrized operator with respect to
exchanges of two interacting nucleons. The vector ~p represents the relative
momentum of two interacting nucleons in their 2N c.m. subsystem, and ~q
stands for the momentum of the spectator nucleon (−~q is the total momen-
tum of the interacting 2N subsystem).The kinetic energy E is given by

E(~p, ~q) =

√

ω (~p )2 + ~q 2 +
√

m2 + ~q 2 − 3m. (23)

Let us denote the individual momenta of the three nucleons in their 3N
c.m. system by ~pi, their total energies by Ei, and assume that nucleon 1
is the spectator. Then the relation between the momenta ~p2 and ~p3 of two
interacting nucleons and their 2N c.m. relative momentum ~p, and between
spectator momentum ~q and the total momentum ~p23 of the interacting 2N
subsystem reads

~q = ~p1 = − (~p2 + ~p3 ) ≡ −~p23 , (24)

~p ≡ ~π(~p2, ~p3)≡
1

2
(~p2−~p3)−

1

2
~p23

[

E2−E3

(E2+E3)+
√

(E2+E3)2−~p 2
23

]

. (25)

Relations (24) and (25) can be inverted to express the individual momenta
~p2, ~p3 in the 3N c.m. system in terms of the relative momentum ~p of the
(23) pair in its 2N c.m. system and its total momentum ~p23 in the 3N c.m.
system:

~p2 = ~p+
1

2
~p23 +

~p · ~p23
[

ω (~p ) +
√

ω (~p )2 + ~p 2
23

]

ω (~p )

~p23 , (26)

~p3 = −~p+
1

2
~p23 −

~p · ~p23
[

ω (~p ) +
√

ω (~p )2 + ~p 2
23

]

ω (~p )

~p23 . (27)

The two additional factors N (~q ′,−~q−~q ′ ) and N (−~q−~q ′, ~q ) in Eq. (22)
which generally can be written as [16]

N (~p2, ~p3) =

∣

∣

∣

∣

∂(~p2, ~p3)

∂(~p, ~p23)

∣

∣

∣

∣

1

2

=

(

4E2E3
√

(E2 +E3)2 − ~p 2
23(E2 + E3)

) 1

2

, (28)

follow from our assumption on normalization of nucleon momentum eigen-
states 〈~pi | ~p

′
i 〉=δ(~pi − ~p ′

i) and the action of the permutation operatorP .
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In a partial wave representation the relativistic Faddeev Eq. (22) is ex-
plicitly given as [16]

φα(p, q) =
1

Eb − E(p, q)

∑

α′α′′

∞
∫

0

dq′q′
2

1
∫

−1

dx
Tαα′(p, π1; q

′)

π1
l′

×
Gα′α′′(q, q′, x)

N1(q, q′, x)N2(q, q′, x)

φα′′(π2, q
′)

π2
l′′

. (29)

The index α comprises a set of quantum numbers (channels)

| α〉 =| (ls)j(λ1
2 )I(jI)J(t12 )T 〉 , (30)

where l, s, j and t are the orbital angular momentum, total spin, total an-
gular momentum and total isospin in the two-body subsystem, respectively.
The indices λ, I, J , and T stand for the orbital angular momentum, the
total angular momentum of the third particle, the total three-body angular
momentum, and the total isospin [24]. Gαα′(q, q′, x) results from a matrix
element of the permutation operator and is given by (note that there is
a misprint in Eq. (B2) of Ref. [16])

Gαα′(q, q′, x) =
∑

k

Pk(x)

×
∑

l1+l2=l

∑

l′
1
+l′

2
=l′

pl2+l′
2 p′

l1+l′
1(1+y1)

l2(1+y2)
l′
1 g

kl1l2l′
1
l′
2

αα′ . (31)

The expressions for π1, π2, y1, y2, N1(q, q
′, x) and N2(q, q

′, x) as well as
other details can be found in [16]. The matrix elements of the permutation
operator P that appear in Eqs. (29) and (31) correspond to the form of
the permutation operator given in [24]. There are also purely geometrical

coefficients g
kl1l2l′

1
l′
2

αα′ derived (see Eqs. (3.349), (3.352) and (A.19) in that
reference). Note that the expressions for the geometrical coefficients are
the same in the relativistic and nonrelativistic cases because we neglect the
effect of the Wigner spin rotations. This is justified because those effects
were found numerically to be of little importance in [21]. Eq. (29) was then
solved in [14] with the principal result that the relativistic binding energies
are smaller by 0.3–0.45 MeV with respect to the nonrelativistic values based
on the same 2N potentials.
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In many applications the partial wave projected Faddeev components
φα(p, q) are not sufficient and we will show now how to obtain the relativistic
wave function components ψα(p, q) from Eq. (14). To this aim we derive and
apply a version of the relativistic operator P “working to the right”. As usual
it is sufficient to consider only one overlap, for example 1〈~p ~q | ~p

′

~q
′

〉2. We
restrict ourselves to the 3N c.m. system and express the individual momenta
~p1, ~p2 and ~p3 in terms of ~p and ~q using Eqs. (26) and (27)

~p1 = ~q , (32)

~p2 = ~p−
1

2
~q +

~p · ~p
[

ω (~p ) +
√

ω (~p )2 + ~q 2

]

ω (~p )

~q , (33)

~p3 = −~p−
1

2
~q −

~p · ~q
[

ω (~p ) +
√

ω (~p )2 + ~q 2

]

ω (~p )

~q . (34)

Next we calculate the relative momentum of nucleons 3 and 1 in their 2N
c.m. frame using Eq. (25)

~p ′′ ≡ ~π(~p3, ~p1) ≡
1

2
(~p3 − ~p1) −

1

2
~p31

[

E3−E1

(E3+E1)+
√

(E3+E1)2−~p 2
31

]

,(35)

where ~p31 = ~p3 + ~p1 = −~p2. As a consequence 1〈~p ~q | ~p
′

~q
′

〉2 becomes

1〈~p~k | ~p
′~k

′

〉2 =

∣

∣

∣

∣

∂(~p2, ~p3)

∂(~p, ~p23)

∣

∣

∣

∣

1

2

∣

∣

∣

∣

∣

∂(~p
′′

, ~p31)

∂(~p3, ~p1)

∣

∣

∣

∣

∣

1

2

δ3
(

~p
′

−~p
′′

(~p, ~q)
)

δ3
(

~q
′

−~p2(~p, ~q)
)

=

(

4E2E3

(E2+E3)
√

(E2+E3)2−~p 2
23

)
1

2

(

(E3+E1)
√

(E3+E1)2−~p 2
31

4E3E1

)
1

2

× δ3
(

~p
′

− ~p
′′

(~p, ~q)
)

δ3
(

~q
′

− ~p2(~p, ~q)
)

≡ M(~p, ~q ) δ3
(

~p
′

− ~p
′′

(~p, ~q)
)

δ3
(

~q
′

− ~p2(~p, ~q)
)

. (36)

The scalar function M(~p, ~q) actually depends on the magnitudes | ~p |, | ~q |
and the scalar product x ≡ p̂·q̂. Again it is easy to recover the nonrelativistic
limit of this overlap:
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M(~p, ~q ) → 1 , (37)

~p
′′

(~p, ~q ) → −
1

2
~p−

3

4
~q , (38)

~p2(~p, ~q ) → ~p−
1

2
~q . (39)

Having obtained Eq. (36) it is then straightforward to calculate the matrix
elements of the permutation operator P in our standard basis [24]

〈p q α | P | p′ q′ α′〉 =

1
∫

−1

dx
δ(p

′

−p̃)

p̃ l
′+2

δ(q
′

−q̃)

q̃ λ
′+2

G̃αα′(p, q, x)M(p, q, x) , (40)

where

p̃ ≡

√

1

4
p2(1−g)2+

9

16
q2(1+h)2+

3

4
pqx(1−g)(1+h) , (41)

q̃ ≡

√

p2 +
1

4
q2(1 + 2f)2 − pqx(1 + 2f) ,

G̃αα′(p, q, x) =
∑

k

Pk(x)
∑

l′
1
+l′

2
=l′

∑

λ′

1
+λ′

2
=λ′

pl′
1
+λ′

1 q l′
2
+λ′

2

× (1 − g)l
′

1 (1 + h)l
′

2 (1 + 2f)λ
′

2 g̃
kl′

1
l′
2
λ′

1
λ′

2

αα′ , (42)

f ≡
−pqx

(

2
√

m2 + p2 +
√

4m2 + 4p2 + q2
)

2
√

m2 + p2
, (43)

g ≡
E3 − E1

(E3 + E1) +
√

(E3 + E1)2 − ~p 2
31

, (44)

and finally

h ≡ −
2

3
f +

1

3
g +

2

3
fg . (45)

The purely geometrical quantity g̃
kl′

1
l′
2
λ′

1
λ′

2

αα′ is strictly the same (under the
neglection of the Wigner spin rotations) as we use for example in [25]. Con-
sequently, the 3N bound state wave function components can be easily cal-
culated.



Lorentz Boosted Nucleon–Nucleon Potential Applied to the . . . 2153

We would like to give the reader an example of the difference between
the nonrelativistic and relativistic wave function and show the single-nucleon
momentum distribution in Fig. 1. We see that differences visible on a log-
arithmic plot appear only for q ≥ 3 fm−1. Most important effects are just
due to the relativistic kinematics. The approximation given in Eq. (21) does
a very good job since the dashed and solid lines nearly overlap. The boost
effect is visible for q ≥ 6 fm−1. The results presented in Fig. 1 and all other
results in this paper were obtained with the CD Bonn NN potential [26].
Based on our experience, see for example [27], we expect little sensitivity of
our results to the choice of a modern high precision NN potential.

q [1/fm℄
P(q)[fm3 ℄

876543210

10+110+010�110�210�310�410�510�610�7
Fig. 1. The single-nucleon momentum distribution for the 3N bound state. The
curves correspond to strictly nonrelativistic (dash-dotted), relativistic with no
boost effects in the T -matrix (dotted), relativistic with approximate boost effects
in the T -matrix according to Eq. (21) (dashed) and fully relativistic calculations
(solid).

3. Results for the ~3He(~e, e′p)pn and ~3He(~e, e′n)pp processes

We will start this section with a brief derivation of the nuclear matrix
elements corresponding to Fig. 2. Here we do not take FSI among the three
outgoing nucleons fully into account. In the A1 diagram, which we call
the plane wave impulse approximation (PWIA) in this paper, FSI is totally
neglected. In the A2 diagram FSI is restricted only to one pair of nucleons.
We will denote the approximation corresponding to the sum of diagrams A1

and A2 by FSI23. The laboratory frame coincides with the initial 3N c.m.
system so the projection of the relativistic wave function on the space of the
individual momenta ~pi reads
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2AA1

T

Fig. 2. Diagrammatic representation of the three-body breakup of 3He. The curly
lines denote the photon coupling to nucleon 1. The large semi-circles depict the
initial 3He bound state. While the diagram A1 neglects all the final state inter-
actions among the three final nucleons, in the diagram A2 the boosted scattering
operator T acts only in the subsystem (23).

〈~p1 ~p2 ~p3 | Ψb〉 =
1

N (~p2, ~p3)
〈~π(~p2, ~p3), ~p1 | Ψb〉 . (46)

Assuming the action of the single nucleon current operator, the amplitude
A1 takes a very simple form

A1 = 〈~p1m1ν1~p2m2ν2~p3m3ν3 | j( ~Q, 1) | ΨbMMT 〉 , (47)

where mi (νi) are spin (isospin) projections of the outgoing nucleons. The
spin (isospin) magnetic quantum number of the initial 3N bound state is
denoted by M (MT ). (MT = 1

2 for the 3He nucleus.) The single nucleon

current j( ~Q, 1) acts only on the nucleon 1. One proceeds by inserting single
nucleon intermediate states and using (46)

A1 = δ
(

~p1 + ~p2 + ~p3 − ~Q
)

∑

m1
′

j
(

~p1, ~p1 − ~Q;m1,m1
′; ν1

)

×
〈

~p ~qm1
′m2m3ν1ν2ν3

∣

∣

∣
ΨbMMT

〉 1

N (~p2, ~p3)
, (48)

where ~p ≡ ~π(~p2, ~p3), and ~q ≡ ~p1 − ~Q. Finally we use the partial wave
decomposition of the bound state in the basis | pqα〉 and arrive at

A1 = δ(~p1 + ~p2 + ~p3 − ~Q)δν1+ν2+ν3,MT

×
1

N (~p2, ~p3)

∑

m1
′

j(~p1, ~p1 − ~Q;m1,m1
′; ν1)

×
∑

α′

∑

µ′

C(j′, I ′, 1
2 ;µ′,M−µ′,M)C(l′, s′, j′;µ′−m2−m3,m2+m3, µ

′)

×C(1
2 ,

1
2 , s

′;m2,m3,m2+m3)C(λ′, 1
2 , I

′;M − µ′−m1
′,m1

′,M−µ′)

×C(t′, 1
2 ,

1
2 ; ν2 + ν3, ν1, ν1 + ν2 + ν3) C(1

2 ,
1
2 , t

′; ν2, ν3, ν2 + ν3)

×Yl′,µ′−m2−m3
(p̂) Yλ′,M−µ′−m1

′(q̂) 〈pqα′ | Ψb〉 . (49)
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The amplitude A2 additionally contains the free 3N propagator G0 and
the (half-shell) boosted scattering operator T acting in the (23) subsystem

A2 = 〈~p1m1ν1~p2m2ν2~p3m3ν3 | T G0 j( ~Q, 1) | ΨbMMT 〉

= δ(~p1 + ~p2 + ~p3 − ~Q) δν1+ν2+ν3,MT
δν1,ν1

′

1

N (~p2, ~p3)

×
∑

m1
′

j(~p1, ~p1 − ~Q;m1,m1
′; ν1)

×

∫

d~p
′
∑

m2
′,m3

′

∑

ν2
′,ν3

′

δν2+ν3,ν2
′+ν3

′

×〈~pm2m3ν2ν3 | T (~p2 + ~p3) | ~p
′

m2
′m3

′ν2
′ν3

′〉

×
1

E2 + E3 −
√

4m2 + 4~p ′ 2 + (~Q− ~p1) 2 + iε

×〈~p
′

~qm1
′m2

′m3
′ν1

′ν2
′ν3

′ | ΨbMMT 〉 . (50)

In the final step both the bound state wave function and the T -matrix are
given in the partial wave basis, which yields

A2 = δ(~p1 + ~p2 + ~p3 − ~Q) δν1+ν2+ν3,MT

1

N (~p2, ~p3)

×
∑

m1
′

j(~p1, ~p1 − ~Q;m1,m1
′; ν1)

×
∑

lsjµt

C(l, s, j;µ−m2−m3,m2+m3, µ)C(1
2 ,

1
2 , s;m2,m3,m2 +m3)

×C(t, 1
2 ,

1
2 ; ν2 + ν3, ν1, ν1 + ν2 + ν3) C(1

2 ,
1
2 , t; ν2, ν3, ν2 + ν3)

×Yl,µ−m2−m3
(p̂)
∑

l̄

∑

α′

δl′ l̄ δs′s δj′j δt′tC(j, I ′, 1
2 ;µ,M − µ,M)

×C(λ′, 1
2 , I

′;M − µ−m1
′,m1

′,M − µ) Yλ′,M−µ−m1
′(q̂)

×

∫

dp′ p′
2
〈p(ls)jt | T ( ~Q− ~p1) | p

′(l′s′)jt〉〈p′qα′ | Ψb〉

×
1

E2 +E3 −
√

4m2 + 4~p ′ 2 + (~Q− ~p1) 2 + iε
. (51)

The single nucleon current matrix elements j(~p1, ~p
′

1 ;m1,m1
′; ν1) (ν1 de-

cides whether the photon couples to a proton or to a neutron) are taken
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completely relativistically, i.e.

j(~p, ~p ′;m1,m1
′) ≡ jµ(~p, ~p

′

;m1,m1
′)

=

√

m
√

m2 + p2

√

m
√

m2 + p
′2
ū(pm1)

(

F1γ
µ + iF2σ

µν(p− p′)ν
)

u(p′m1
′) ,

(52)

where u are Dirac spinors. F1(p
′ − p)2) and F2(p

′ − p)2) are Pauli and
Dirac nucleon form factors, respectively. In this paper we used the Höhler
parametrization for the nucleon electromagnetic form factors [28].

Please note that in general keeping the complete final state interaction
the final state wave function has to be boosted. We refer to Sec. 4, where
an approximate 3N Hamiltonian in a moving frame is proposed. In our
approximation it is sufficient to use just the relativistic kinematics and boost
the two-body t-matrix.

In this section the results for the three-body breakup will be discussed.
We assume the reference frame for which the three-momentum transfer
~Q ≡ ~k − ~k ′ is parallel to ẑ, ŷ ≡ (~k ′ × ~k)/(| ~k ′ × ~k |), and x̂ = ŷ × ẑ. Here
~k and ~k ′ are the initial and final electron momenta. The exclusive cross
section for the e+3 He → e′ + p+ p+ n reaction has the form [29]

dσ(~S, h) = σMott {(vLWL + vTWT + vTTWTT + vTLWTL)

+ h (vT′WT′ + vTL′WTL′) } δ
(

k +m3He − k ′ − E1 − E2 − E3

)

× δ
(

~k − ~k ′ − ~p1 − ~p2 − ~p3

)

d3~k ′ d3~p1 d
3~p2 d

3~p3 , (53)

where σMott and all vi are analytically given kinematical factors, h is the
helicity of the incoming electron and ~S represents the initial 3He spin di-
rection. The electron mass is neglected and m3He denotes the 3He mass.
The response functions Wi, which contain the whole dynamical information,
are constructed from the nuclear current matrix elements taken between the
initial bound state and the final scattering state. Using Eq. (53) three ob-
servables which we consider in this paper can be easily constructed. The
first one is the unpolarized sixfold differential cross section

d6σ

dk ′dk̂ ′ dE1 dp̂1

= 1
2

∑

mS

∑

m1,m2,m3

C

∫

dp̂J p1E1
1

4
(E2 + E3) p

×σMott (vLWL + vTWT + vTTWTT + vTLWTL) , (54)

where mS, m1, m2, m3 are spin projections of the initial 3He and of the three
outgoing nucleons. The relativistic relative momentum ~p ≡ pp̂ is defined in
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Eq. (25). The additional factor C = 1
2 is necessary only if the observed

particle is a neutron (the two not detected particles are then identical).
Note that we changed variables according to [16]

d3~p1 d
3~p2 d

3~p3 = J d3~p1 d
3~p23 d

3~p , (55)

in order to simplify integrations over the unobserved parameters of the final
3N system. The kinematical factors in Eq. (54) simplify significantly in the
nonrelativistic limit

~p→ 1
2 (~p2 − ~p3 ) , Ei → m, J → 1 . (56)

The second and third observables we investigate here are special cases of
the helicity asymmetry A(~S)

A(~S ) ≡
σ(~S, h = +1) − σ(~S, h = −1)

σ(~S, h = +1) + σ(~S, h = −1)
, (57)

under the same kinematical conditions as the unpolarized cross section in
Eq. (54) and obtained from the corresponding polarized semi-exclusive cross

sections σ(~S, h). We consider A‖ for ~S ‖ ẑ and A⊥ for ~S ‖ x̂. Further
we stick to the so-called parallel kinematics, for which the finally observed
nucleon is ejected parallel to ~Q. In this case WTT = WTL = 0. This choice
of kinematical conditions is optimal for the FSI23 approximation. We can
expect that under these kinematics, at least for high energies, the reaction
mechanism is dominated by the processes depicted in Fig. 2.

Our nonrelativistic framework [4] allows us to calculate the initial 3He
and final scattering states consistently using any 3N realistic Hamiltonian
and including also many-body current operators. There is no such rela-
tivistic dynamical framework available at the moment and in this paper
we would like to study what are the different effects when some nonrela-
tivistic elements are replaced by their relativistic counterparts. We focus
on the approximation depicted in Fig. 2 and calculate the matrix elements
corresponding to diagrams A1 and A2, first strictly non-relativistically, sec-
ondly using a mixed approach [13] with the nonrelativistic t-matrix and
wave functions but employing relativistic kinematics and the relativistic sin-
gle nucleon current operator. Finally, we use consistently the relativistic 3N
bound state, kinematics, the boosted T -matrix and the relativistic single
nucleon current operator, as described in Sec. 2.

We chose eight electron kinematics (see Fig. 3 and Table I), characterized
by the same electron beam energy (E=2000 MeV) and different values of

the energy (ω) and momentum (Q =| ~Q |) transfers. For some of them full
inclusion of FSI is possible within our nonrelativistic framework, since the
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Fig. 3. Eight electron kinematics ((ω, Q) points) considered in the present paper
are marked as full circles. The shaded area shows the (ω, Q) points for which the
3N c.m. kinetic energy is smaller than the pion mass. The solid lined corresponds
to elastic electron scattering on 3He and the dashed line to the quasi-free scattering
condition (scattering on a free nucleon).

3N c.m. energy does not allow for pion production. In that case we always
used the nonrelativistic current operator. We will thus check to what extent
the FSI23 approximation might be sufficient and then concentrate more on
different relativistic effects within this simplified relativistic framework. For
more detailed discussion of the validity of the FSI23 approximation see [30].

TABLE I

Parameters of the eight electron kinematics studied in this paper: the electron
scattering angle θe, the outgoing electron energy E′, the energy transfer ω, the
magnitude of the three-momentum transfer Q, the relativistic (E3N

c.m. (rel)) and
nonrelativistic (E3N

c.m.
(nrl)) kinetic c.m. 3N energies.

electron θe E′ ω Q E3N

c.m.
(rel) E3N

c.m.
(nrl)

kinematics [deg] [MeV] [MeV] [MeV/c] [MeV] [MeV]

k1 5.6 1980 20 194.8 5.6 5.5
k2 11.4 1920 80 395.8 45.0 44.5
k3 17.5 1820 180 608.6 109.7 106.5
k4 23.5 1700 300 808.3 185.4 176.3
k5 29.4 1570 430 996.2 265.3 246.1
k6 36.5 1410 590 1206.7 360.9 323.8
k7 23.6 1820 180 800.0 63.2 58.7
k8 14.0 1820 180 500.0 130.2 127.9
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The kinematics k1–k6 are chosen along the quasi-elastic scattering line.
The additional kinematics k7 and k8 are chosen above and below the quasi-
elastic line in order to identify differences with respect to the kinematics
that belong to the quasi-elastic scattering group.

For the first two figures (Fig. 4 and Fig. 5) we show the parallel helicity
asymmetry A‖ both for the neutron and proton knockout. In most cases
the FSI23 approximation is not sufficient, i.e. the nonrelativistic FSI23
curve lies far away from the nonrelativistic prediction taking FSI fully into
account. The latter reveals very often much a more complicated behavior
contrary to the rather simple shapes of the FSI23 predictions. This FSI23
approximation turns out to be satisfactory (however not always) only at
the upper end of the energy spectrum for higher magnitudes of the three-
momentum transfers. It is interesting to notice that the contribution from
the A2 diagram is very small for the k1 kinematics in the neutron case. Here
the PWIA and all FSI23 curves overlap. That does not mean, however, that
all FSI is negligible in this case. Already the symmetrization in the plane
wave predictions changes the picture significantly and the results with full
inclusion of FSI are still very different.

The relativistic effects (the spread among the three FSI23 predictions)
are generally most evident not for the maximal energy of the ejected nu-
cleon, where the (23) subsystem c.m. energy is very small, but rather in
the middle of the nucleon energy range. Generally, the mixed approach to
the FSI23 calculation is closer to the relativistic result than its fully non-
relativistic partner. Especially for the k7 kinematics the difference between
the relativistically and non-relativistically calculated maximal energy of the
knocked out nucleon is clearly visible. For the neutron knockout at the
k3 and k4 kinematics the asymmetries tend to reach specific values which
depend only on the neutron magnetic form factors and trivial kinematic
factors. This corresponds very closely to electron scattering on a free, fully
polarized neutron at rest and was suggested as a way to access the important
neutron property, since there is no free neutron target in nature. Note the
big differences between the results for the k3, k7 and k8 kinematics which
all belong to the same energy transfer ω but have different magnitude Q of
the three momentum transfer.

These differences are even more true for the perpendicular helicity asym-
metry A⊥ displayed in Figs. 6 and 7. For this observable, especially in the
case of the neutron knockout, FSI23 predictions come close to the results
fully employing FSI only for the k3 kinematics, which lies on the quasi-
elastic scattering curve. The FSI23 predictions lie lower (k7) or higher (k8)
than the results based on the more complete dynamical model. Also for this
asymmetry the PWIA and FSI23 predictions take very simple shapes at the
first two kinematics, while the full inclusion of FSI leads to more compli-
cated structures. The perpendicular asymmetry for the neutron knockout
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Fig. 4. The parallel asymmetry A‖ for the neutron (left panel) and proton (right
panel) ejection in the virtual photon direction as a function of the emitted nucleon
kinetic energy T1 ≡ E1 − m for the first four electron kinematics from Table I.
The double dashed line shows the nonrelativistic PWIA prediction and the dash-
dotted line the nonrelativistic symmetrized PWIA (PWIAS) prediction. Further
we show the strictly nonrelativistic FSI23 results (triple dashed line), the FSI23
predictions with some relativistic features as described in the text (dotted line),
and the consistent relativistic FSI23 results (dashed line). Finally the prediction
with full inclusion of FSI is represented by the solid line.
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Fig. 5. The same as in Fig. 4 for the remaining four electron kinematics from
Table I. The PWIAS prediction and the one with full FSI are missing for the k5
and k6 kinematics.

process is very sensitive to the neutron electric form factor so also in this
case the values for the maximal neutron energies, especially at the k3 and
k4 kinematics, are determined predominantly by the neutron electric form
factor values. This explains why in the neutron case the parallel asymmetry
is much bigger than the perpendicular one.
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Fig. 6. The same as in Fig. 4 for the perpendicular asymmetry A⊥.

For the k5 and k6 kinematics there is a clear gap between the pure nonrel-
ativistic FSI23 result and the predictions employing relativistic kinematics
and the relativistic current operator. This is partly due to the arguments of
the electromagnetic form factors, which differ for these two approaches. In
the nonrelativistic case we simply take ω2 − ~Q 2 which does not correspond
to the true four-momentum transfer felt by the nucleon. In the relativistic
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Fig. 7. The same as in Fig. 6 for the remaining four electron kinematics from
Table I. The PWIAS prediction and the one with full FSI are missing for the k5
and k6 kinematics.

case we (exactly) account for the four momentum transferred to the nucleon
using the following form

(

√

m2 + (~p+ ~Q) 2 −
√

m2 + ~p2
)2

− ~Q 2 , (58)

where ~p is the nucleon momentum prior to photon absorption.



2164 J. Golak et al.

180160140120100806040200
10�0710�0810�0810�0910�1010�1110�1210�13 180160140120100806040200

10�0610�0710�0810�0810�0910�1010�1110�12

300250200150100500
10�0710�0810�0810�0910�1010�1110�1210�1310�14

80706050403020100
10�0610�0710�0810�0810�0910�1010�11 80706050403020100

10�0510�0610�0710�0810�0810�0910�10
121086420

10�410�510�610�7121086420
10�510�610�710�8

300250200150100500
10�0710�0810�0810�0910�1010�1110�1210�1310�14
d6 �=(dk0 d
^ k0 dE 1d^p 1)
[fm2 =(MeV

2 sr2 )℄

T1 [MeV℄
k4

k3

k2

k1

Fig. 8. The same as in Fig. 4 for the sixfold differential cross section.

Finally, in Figs. 8 and 9, we show the six fold differential cross sections
for the neutron and proton knockout. Both, for the proton and neutron
knockout, the cross sections vary by many orders of magnitude. There is
always a very steep rise when the nucleon energy approaches its maximal
value but the cross section for the proton case is always approximately factor
10 larger than the corresponding neutron observable. The PWIA and FSI23
predictions for small T1 values are negligible and differ very much both from
the PWIAS and results taking FSI fully into account. Except for the k1



Lorentz Boosted Nucleon–Nucleon Potential Applied to the . . . 2165

16014012010080604020
10�1010�1110�1210�13 16014012010080604020

10�0910�1010�1110�12

180160140120100806040
10�0610�0710�0810�0910�1010�11

6005004003002001000
10�0810�1010�1210�1410�1610�18 6005004003002001000

10�0810�1010�1210�1410�16
450400350300250200150100500

10�0810�0810�0910�1010�1110�1210�1310�1410�15450400350300250200150100500
10�0810�0810�0910�1010�1110�1210�1310�1410�1510�16

180160140120100806040

10�0610�0710�0810�0910�1010�1110�12
d6 �=(dk0 d
^ k0 dE 1d^p 1)
[fm2 =(MeV

2 sr2 )℄

T1 [MeV℄
k8

k7

k6

k5

Fig. 9. The same as in Fig. 8 for the remaining four electron kinematics from
Table I. The PWIAS prediction and the one with full FSI are missing for the k5
and k6 kinematics.

kinematics, we can always find an energy interval (at least on the logarithmic
scale) where the group of the FSI23 lines is very close to the curve obtained
with the full inclusion of FSI (when applicable). As expected, for the k5 and
k6 kinematics the difference between the fully nonrelativistic and the other
FSI23 results is best visible. The effects which we see for the k7 kinematics
are magnified by the trivial differences in the allowed energy ranges.
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4. Additional remarks on relativistic requirements

4.1. Requirements on the current

The components jµ of the electromagnetic current operator have to obey
the continuity equation, which can be translated into the well known form

[H, j0(0)] = [~P ,~j(0)] . (59)

While this has been approximately fulfilled (using a single nucleon density in
the lowest order of the p/m expansion) for instance in the form of the Riska
prescription [32, 33] for a NN force like AV 18 [34], a further requirement
results from

ei~α·
~Kjµe−i~α· ~K = Λµ

ν j
ν , (60)

where ~K is the boost generator, which includes an interaction in the instant
form of relativistic quantum mechanics. The vector ~α is related to the
relative velocity between inertial frames. This leads in infinitesimal form to
the covariance conditions

[K l, j0(0)] = i jl(0) , (61)

[K l, jm(0)] = i δlmj
0(0) . (62)

Since K l contains interactions jl must contain on top of the single-body
term at least two-body terms and in addition has to be consistent with the
requirement from (59). Consequently (62) tells us that this must be true
for j0 as well. Thus if one enters into a kinematical regime where relativity
plays a role the often used low energy assumption of a single-body density
can no longer be valid. Apparently it is a difficult task phenomenologically
to find currents which fulfill (59), (61) and (62).

For a single nucleon K l and jµ are known, of course, and fulfill the
covariance equations. But even there it is a pretty complex interplay of
kinematical variables to verify the conditions (61) and (62) as is obvious
from the explicit expressions for the single nucleon matrix elements:

〈~ps|K l|~p′s′〉 = −
i

2

(

p l

Ep
+ 2Ep∇

l
p

)

δ(~p − ~p′)δss′

−
1

2

(~p × ~σ)lss′

E − p+m
δ(~p − ~p′) , (63)
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〈~ps|j0|~p′s′〉 =
1

2

1

(2π)3

√

Ep +m

Ep

×

√

E′
p +m

E′
p

(

1 +
~p · ~p′ + i~σ · (~p× ~p′)

(Ep +m)(E′
p +m)

)

ss′

, (64)

〈~ps|jl|~p′s′〉 =
1

2

1

(2π)3
1

EpE′
p

×

[√

Ep+m

E′
p+m

(p′
l
+i(~p′×~σ)l)+

√

E′
p+m

Ep+m
(pl−i(~p×~σ)l)

]

ss′

.

(65)

The matrix elements (64) and (65) are consistent with (52) where we dropped
for the sake of a simpler notation the nucleonic electromagnetic form factors.
A very much more simple algebra is needed to verify (59) with 〈~ps|H|~p′s′〉 =

Epδ(~p − ~p′)δss′ and 〈~ps|~P |~p′s′〉 = ~pδ(~p − ~p′)δss′ .
The difficulty in fulfilling (59), (61) and (62) at the same time is illus-

trated in the Appendix. There we naively regard the standard two-body
exchange current resulting from the one-pion exchange, the continuity equa-
tion and the assumption of a single nucleon density in lowest order of the
p/m expansion. Now we use the lowest order form for the interaction in ~K

~Kv = −iv~∇~P
, (66)

where v is the two-body force in its center of mass frame and ~P the operator
of total two-body momentum. This follows from the Poincaré algebra in
the Bakamjian Thomas scheme. Then applying that vector interaction and
using the same simple nucleon density the resulting right hand side of (61)
does not coincide with the standard form of the exchange current as resulting
from (59). Only for momentum transfer ~Q ≡ ~P ′ − ~P going to zero they
agree. This indicates that a systematic p/m expansion is needed. But more
importantly one needs a dynamical input for the charge density as well in
order to fulfill the equations.

In a low momentum region where chiral perturbation theory can be used,
the electromagnetic nucleonic current operator including two-body parts and
more can be derived in the framework of effective field theory. Including rel-
ativistic corrections systematically should lead to currents and boost genera-
tors which fulfill the covariance equations as well as the continuity equation
to a given order in the p/m expansion. Work in that direction is under
way [35]. For a recent review on such an approach, however focusing on
nuclear forces, see [36].
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4.2. A low order 3N Hamiltonian in a moving frame

The approximation (21) for the boosted two-nucleon potential in Eq. (10)
can be repeated with the 3N Hamiltonian in a moving frame (total 3N

momentum ~P different from zero). It is given as

H =
√

M2 + P 2 , (67)

where

M = M0 +
∑

i<j

Vij + V4 , (68)

is the 3N mass operator. Note Vij is the boosted two-nucleon potential

and V4 is a 3N force. In this case the expansion in powers of ~P is even
more justified than for the internal momentum ~q for the boosted two-body
force, since ~P is controlled from outside. For example in the case of electron
scattering on 3He at rest it would be the momentum ~Q transferred from the
electron. Let us assume that ~P is small enough that the expansion of H is
justified. Then

H = M +
P 2

2M
+ . . . , (69)

1

M
=

1

M0
−

1

M0





∑

i<j

Vij + V4





1

M0
, (70)

leading to

H = M0 +
P 2

2M0
+
∑

i<j

Vij + V4 −
P 2

2

1

M0





∑

i<j

Vij + V4





1

M0
+ . . . . (71)

Technically this is easy to handle since the corrections of O(P 2) to the
potentials are just multiplicative kinematical factors in momentum space.

5. Summary

Many important observables in electron induced breakup of 3He are mea-
sured in kinematical regions, where a nonrelativistic approach is not ap-
plicable. Thus an approximation is needed with some relativistic features
included, which can serve as a practical tool to analyze results of such exper-
iments. One possibility is to extend the so-called FSI23 approximation (see
Sec. 3) which has been used since many years to include some relativistic
ingredients.
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In this study we added to this approach a consistent relativistic treat-
ment of the initial 3N bound state, the relativistic single nucleon current
operator, the relativistic boosted NN scattering operator and relativistic
kinematics. We studied a number of electron kinematics, mostly on a quasi-
elastic scattering line, in order to estimate the effects of these new relativistic
ingredients. We found out that the bulk of relativistic effects comes from
the relativistic kinematics. Further (consistent with kinematics) relativistic
features of the calculation are less important. For the kinematics within
the shaded area of Fig. 3 (k1, k2, k3, k7, k8), even in the neighborhood of
the highest energy of the ejected nucleon, the FSI23s and the full FSI are
different. Therefore, the full FSI treatment is mandatory for a quantitative
analysis. On top, especially for the k7 and k8 kinematics some relativis-
tic effects are noticeable and should be included in the future analyzes of
correspondingly precise data. For the kinematics k5 and k6 in the range
of highest nucleon energies the relativistic effects are clearly visible, espe-
cially for neutron emission, and should be taken into account in the analysis
of experimental data. Whether full FSI effects will be present there, too,
cannot be answered by us right now. Nevertheless, as the first step the con-
structed approximate framework can be used to analyze experimental data
taken at high energy and momentum transfers. In the future it should be
replaced by fully relativistic calculations not available at the moment which
include all FSI’s along the lines of the approach applied in the 3N continuum
in [21,31]. In addition the current has to obey the continuum equation and
the covariance equations consistently, which poses a nontrivial task.

This work was supported by the Polish State Committee for Scientific
Research (KBN) under grant no. 2P03B00825. One of us (W.G.) would like
to thank the Foundation for Polish Science for the financial support during
his stay in Kraków. The numerical calculations have been performed on the
IBM Regatta p690+ of the NIC in Jülich, Germany.

Appendix

Two-body terms

The two-body exchange current ~jv related to the one-pion exchange

v =
~σ1 · ~k ~σ2 · ~k

(~k)2 + (mπ)2
~τ1 · ~τ2 , (A.1)

has the well known form:
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〈~p ~P |~jv |~p
′ ~P ′〉 = i(Gp −Gn)(~τ1 × ~τ2)z~σ1 ·

(

~k −
~Q

2

)

~σ2 ·

(

~k +
~Q

2

)

×

(

1

(~k −
~Q
2 )2 + (mπ)2

−
1

(~k +
~Q
2 )2 + (mπ)2

)

~k +
~Q
2 − (

~Q
2 − ~q)

(~k +
~Q
2 )2 − (~k −

~Q
2 )2

−

(

~σ2~σ1 · (~k −
~Q
2 )

(~k −
~Q
2 )2 + (mπ)2

+
~σ1~σ2 · (~k +

~Q
2 )

(~k +
~Q
2 )2 + (mπ)2

)

. (A.2)

Here Gp(n) are the proton (neutron) electric form factors, ~Q = ~P ′ − ~P and
~k = ~p− ~p′. This result can be extracted from Eq. (59) in the form

〈~p ~P |[v, j0]|~p′ ~P ′〉 =
[

~σ1 · (~k −
~Q
2 )~σ2 · (~k −

~Q
2 )

(~k −
~Q
2 )2 + (mπ)2

) −
~σ1 · (~k +

~Q
2 )~σ2 · (~k +

~Q
2 )

(~k +
~Q
2 )2 + (mπ)2

)

]

× i(Gp −Gn)(~τ1 × ~τ2)z (A.3)

≡ ~Q · 〈 ~p ~P |~jv|~p
′ ~P ′〉 , (A.4)

where the single nucleon density for proton (Πp) and neutron (Πn)

j0 = j01

(

GpΠp(1) +GnΠn(1)
)

+ j02

(

GpΠp(2) +GnΠn(2)
)

(A.5)

has been used. In lowest order 〈~p1~p2|j
0
1 |~p

′
1~p

′
2〉 = δ(~p2 − ~p′2) and correspond-

ingly for j02 . Now performing the same straightforward algebra using ~Kv

from Eq. (66) leads to

〈~p~P |[ ~Kv, j
0]|~p′ ~P ′〉 = i(Gp −Gn)(~τ1 × ~τ2)z

× i~∇ ~Q

(

~σ1 · (~k +
~Q
2 )~σ2 · (~k +

~Q
2 )

(~k +
~Q
2 )2 + (mπ)2

−
~σ1 · (~k −

~Q
2 )~σ2 · (~k −

~Q
2 )

(~k −
~Q
2 )2 + (mπ)2

)

. (A.6)

Apparently 〈~p′ ~P ′|~j′v |~p
′ ~P ′〉 defined via

〈~p~P |[ ~Kv , j
0]|~p′ ~P ′〉 ≡ i〈~p′ ~P ′|~j′v|~p

′ ~P ′〉 (A.7)

is not the same as 〈~p′ ~P ′|~jv |~p
′ ~P ′〉 defined in Eq. (A.4) and given in Eq. (A3).

They agree however for ~Q = 0 as is easily seen.
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