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Complete analysis of quantum wave functions of linear systems in an
arbitrary number of dimensions is given. It is shown how one can con-
struct a complete set of stationary quantum states of an arbitrary linear
system from purely classical arguments. This construction is possible be-
cause for linear systems classical dynamics carries the whole information
about quantum dynamics.
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1. Introduction

Connection between classical and quantum description of physical sys-
tem manifests itself in very amazing and nontrivial way. We understand
how to describe any system in classical and quantum language and also
we believe that quantum description should smoothly transform to classical
one when we neglect quantum corrections1. But in general we still do not
understand how one can make this transformation in practice and identity
the classical motion in quantum one. The first description how one should
understand this correspondence was given by Ehrenfest in his famous theo-
rem [1]. It states that the expectation values of physical observables evolve
in time almost as classical quantities (up to quantum corrections). In the
case of linear systems they evolve exactly in the same way. This is evident
in the Heisenberg picture of quantum evolution. Since in the case of a lin-
ear system classical Hamiltonian equations of motion are linear they have
exactly the same structure as quantum Heisenberg equations of evolution
of quantum operators. Therefore, in this case the classical dynamics carries
the full information about quantum dynamics.

1 It is often said that we go with ~ to zero.
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The question which we answer in this paper is how this exact connection
between classical and quantum dynamics in arbitrary number of dimensions
is realized in the Schrödinger picture where the whole dynamics is contained
in the evolution of the wave function of the system. Full discussion of this
correspondence in one dimensional case was given before in [3].

The main observation presented here is a multidimensional generalization
of our idea proposed earlier in [4] for the three dimensional case.

2. Class of linear systems

For each N -dimensional linear system there always exist such canonical
variables ξ and π that the system is described by the Hamiltonian of the
following form

H =
1

2m
π · F̂ · π + ξ · Q̂ · π +

m

2
ξ · Û · ξ +mf(t) · ξ +

1

m
h(t) · π , (1)

where the matrices F̂ and Û are symmetric and the vectors f(t) and h(t)
are given functions of time. If π is chosen as a kinetic momentum then
the matrix F̂ should be positive definite (kinetic energy should increase

with momentum of the particle). Therefore, there exists a matrix Ô which

diagonalizes the matrix F̂ to identity

ÔT · F̂ · Ô = Î . (2)

Let us define the following matrices

Ŵ = Ô−1 · Q̂ · Ô , (3a)

Ŝ =
1

2

(

Ŵ + ŴT
)

, (3b)

Ω̂ =
1

2

(

Ŵ − ŴT
)

, (3c)

and now let us make the following canonical transformation to the new
canonical variables r and p

r = ÔT · ξ , (4a)

p = Ô−1 · π +mŜ · ÔT · ξ +
(

ÔT
)

−1
· h(t) . (4b)

One can show that it is indeed a canonical transformation because the Pois-
son bracket structure is preserved. This transformation is in fact the com-
position of three simpler canonical transformations: the diagonalization of
the kinetic energy term

r′ = ÔT · ξ , p′ = Ô−1 · π , (5a)
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the shift in the momentum space

r′′ = r′, p′′ = p′ +
(

ÔT
)

−1
· h(t) , (5b)

and the stretching transformation of the phase space of the system

r = r′′, p = p′′ +mŜ · r′′. (5c)

In our new variables, the Hamiltonian of the system has the form

H =
p2

2m
+ r · Ω̂ · p +

m

2
r · V̂ · r −mg(t) · r − 1

2m

[

(

ÔT
)

−1
· h(t)

]2

, (6)

where

V̂ = Ô−1 · Û ·
(

ÔT
)

−1
− Ŝ2 −

[

Ω̂, Ŝ
]

, (7a)

g(t) =
1

m
Ŵ ·

(

ÔT
)

−1
· h(t) − Ô · f(t) . (7b)

The last term in the Hamiltonian (6) depends only on time. Therefore,
without loss of generality we can omit it.

3. Classical dynamics

Classical equations of motion following from the Hamiltonian (6) have
the form

dr

dt
=

p

m
− Ω̂ · r , (8a)

dp

dt
= −mV̂ · r − Ω̂ · p −mg(t) . (8b)

Of course the best way to solve these equations is to solve first a homogeneous
equation with g(t) ≡ 0. In that case any solution of equations (8) can be
expressed as a sum of the eigenmodes

(

r(t)

p(t)

)

=
2N
∑

k=1

λk

(

Rk

P k

)

eiωkt , (9)

where the coefficients λk are determined by initial conditions. The char-
acteristic frequencies ωk and the amplitudes (Rk,P k) obey the following
matrix equation

(

− Ω̂ − iωk
1

m
−mV̂ − Ω̂ − iωk

)

(

Rk

P k

)

= 0 . (10)
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In the Appendix A we show that for such a matrix, the eigenvalues appear
in pairs. It means that for an N dimensional system we always have the
following frequencies

±ω1, ±ω2, . . . , ±ωN−1, ±ωN . (11)

This means that amplitudes of the modes ωi and −ωi are related by complex
conjugation. Therefore, any physical solution of Eqs. (8) can be expressed
in the following way

(

r(t)

p(t)

)

=

N
∑

i=1

[

λi

(

Ri

P i

)

eiωit + λ∗i

(

R∗

i

P ∗

i

)

e−iωit

]

. (12)

In the presence of the external field the only difference is that the parameters
λi are time dependent and the general solution has a form

(

r(t)

p(t)

)

=

N
∑

i=1

[

λi(t)

(

Ri

P i

)

eiωit + λi(t)
∗

(

R∗

i

P ∗

i

)

e−iωit

]

. (13)

Time evolution of the coefficients λi(t) is determined by the time dependence
of the vector g(t) and is given by the ordinary differential equation

dλi(t)

dt
= −mgi(t) , (14)

where gi(t) are the coefficients in the following expansion of the vector g(t)
into the mode amplitudes

(

0

g(t)

)

=
N
∑

i=1

[

gi(t)

(

Ri

P i

)

+ gi(t)
∗

(

R∗

i

P ∗

i

)]

. (15)

A full classical analysis of linear systems in three dimensions was given
before [2, 4]. One can easily generalize this analysis to an arbitrary number
of dimensions.

4. Quantum dynamics of wave packets

In the position representation of a quantum system, the wave function
Ψ(r, t) obeys the following Schrödinger equation

i~∂tΨ(r, t) =

(

− ~
2

2m
∇

2 +
~

i
r · Ω̂ · ∇ +

m

2
r · V̂ · r +mg(t) · r

)

Ψ(r, t) .

(16)
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4.1. Dynamics of Gaussian wave packets

In the first step of our analysis, let us consider the dynamics of a state
of a quantum-mechanical system described by a Gaussian wave function of
the form

Ψ(r, t) = N(t)eiφ(t)/~ exp

(

−m

2~
(r−R(t)) · K̂(t) · (r−R(t)) +

i

~
r · P (t)

)

,

(17)

where the matrix K̂(t) is of course symmetric and its real part is posi-
tive. This wave function should also be normalized. Since the Schrödinger
equation (16) preserves normalization in time, it is enough to assume the
normalization condition at the initial moment t = 0

1 =

∫

RN

dNr|Ψ(r, 0)|2 = N(0)2

[

2π~

mDet(Re K̂(0))

]N/2

. (18)

Parameters R and P have a direct interpretation as the position and mo-
mentum of the center of the wave function and at the same time they are the
expectation values of the quantum operators of the position and momentum.

One can show that the Schrödinger equation (16) is equivalent to the
following equations for the parameters of the wave function

dK̂(t)

dt
= − iK̂(t)2 + iV̂ −

[

Ω̂, K̂(t)
]

, (19a)

dR(t)

dt
=

P (t)

m
− Ω̂ · R(t) , (19b)

dP (t)

dt
= −mV̂ · R(t) − Ω̂ · P (t) −mg(t) , (19c)

dN(t)

dt
=

N(t)

2
Tr (Im K̂(t)) , (19d)

dφ(t)

dt
= −~

2
Tr (Re K̂(t)) − P (t)2

2m
+
m

2
R(t) · V̂ · R(t) . (19e)

Comparing the equations (19b) and (19c) with the classical equations of
motion (8), one can see that the dynamics of the center of the wave packet is
the same as the dynamics of a classical particle. It is a well known realization
of the Ehrenfest theorem which is, as we have said before, exactly satisfied
for linear systems.

It is worth while to notice that the dynamics of the center of our wave
packet is totally separated from the dynamics of the internal motion of the
packet. This is a general property of quantum dynamics in external harmonic
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potentials [7]. In addition, the evolution of the shape of our wave packet

(described by a complex matrix K̂) is not influenced by the external field
g(t). The only place where the external field appears in our equations is
the dynamics of the center of mass. Therefore, to solve the general problem
of the motion of the Gaussian wave packet, one can solve at first a simpler
problem of quantum dynamics without an external force and without motion
of the center of the packet. Then one just needs to move this solution along
a chosen classical trajectory.

4.2. Time evolution of the shape of the wave packet

The Eq. (19a) describes the dynamics of the shape of the Gaussian state
and it has the form of a well known matrix Riccati equation. Mathematical
theory of these equations is well developed [5, 10]. In particular, the ma-
trix Riccati equations find numerous applications in control theory [6]. It is
known that these nonlinear equations can be replaced by the linear ones. Fol-
lowing the standard procedure [5], we shall search for solutions of Eq. (19a)
in the form

K̂(t) = − i

m
N̂(t) · D̂−1(t) . (20)

This matrix equation is satisfied (as is shown in the Appendix A) when the

matrices N̂ and D̂ obey the following linear equations

dN̂

dt
= −mV̂ · D̂ − Ω̂ · N̂ , (21a)

dD̂

dt
=

1

m
N̂ − Ω̂ · D̂ . (21b)

The linearization of the Riccati equation, in addition to being an effec-
tive mathematical tool, has also conceptual advantages. Namely, it leads
to a direct relationship between classical and quantum theory. Comparing
Eqs. (21) with Eqs. (8), one can see that the columns of the matrices N̂

and D̂ satisfy the same equations as the classical position and momentum
vectors, respectively. Therefore, from the knowledge of the classical motion,
one may determine the evolution of Gaussian wave function. It is a desir-
able manifestation of an exact connection between classical and quantum
mechanics in the language of wave functions.

4.2.1. Example in one dimension

Let us show now how this formalism works for the one dimensional stan-
dard harmonic oscillator [8, 9]. In this case our system is described by the
Hamiltonian

H =
p2

2m
+
mω2

2
x2 . (22)
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In this case, the equations of the classical motion have a simple, scalar form

ẋ =
∂H
∂p

=
p

m
, ṗ = −∂H

∂x
= −mω2x . (23)

The solution of these equations satisfying the initial conditions x(0) = x0,
p(0) = p0 is the following

x(t) = x0 cos(ωt) +
p0

mω
sin(ωt) , (24a)

p(t) = p0 cos(ωt) −mωx0 sin(ωt) . (24b)

In the quantum mechanical case, the dynamics is described by the Schrödin-
ger equation

i~∂tΨ(x, t) =

(

− ~
2

2m

∂2

∂x2
+mω2x2

)

Ψ(x, t) . (25)

Let us assume that the wave function of the system has a Gaussian form

Ψ(x, t) =

(

~π

m Reα(t)

)
1

4

eiφ(t) e−
m
2~

α(t)x2

, (26)

where the parameter α(t) describes the shape of our Gaussian packet. Ac-
cording to the equation (19e), the phase of our wave function is determined
by the evolution the of α(t)

φ(t) = −1

2

t
∫

0

Reα(τ) dτ . (27)

If we know that at the beginning the shape of our packet is given by the
condition

α(0) = kω , (28)

we can predict what will be its value at any moment. The parameter α(t)
obeys the following Riccati differential equation

α̇(t) = −iα2(t) + iω2 . (29)

Due to the Riccati procedure outlined before, we can linearize this equation
by a substitution α = −in(t)/md(t) and then we know that the equations of
the evolution of the parameters d(t) and n(t) are equivalent to the classical
equations of motion (8)

ḋ(t) =
n(t)

m
, ṅ(t) = −mω2d(t) . (30)
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Let us choose the initial conditions for n(t) and d(t) which are in accordance
with (28) as follows

d(0) = −i
√

~

mω
, n(0) = k

√
~mω . (31)

From the solution of the classical equations of motion (24) one finds the time
dependence of d(t) and n(t)

d(t) = −i
√

~

mω
[cos(ωt) − ik sin(ωt)] , (32a)

n(t) =
√

~mω [k cos(ωt) − i sin(ωt)] . (32b)

It means that the solution of the Schrödinger equation has a form

Ψ(x, t) =

(

π~

mω

)
1

4

(

Re
cos(ωt) − ik sin(ωt)

k cos(ωt) − i sin(ωt)

)
1

4

eiφ(t)

× exp

(

−mω
2~

k cos(ωt) − i sin(ωt)

cos(ωt) − ik sin(ωt)
x2

)

. (33)

Such a wave function describes pulsating states known from the quantum
mechanics courses.

One should notice here that if we put k = 1 at the beginning of motion,
then the time dependence will appear only in the phase of the wave function.
It means that such a function is a stationary Gaussian wave packet of our
system described by the Schrödinger equation (16).

5. Gaussian stationary quantum states

As we have shown above in the one dimensional example using the Riccati
method we can not only predict the evolution of the shape but we can also
find a stationary state of our system whose shape is constant in time. We
will show now how to obtain such a stationary Gaussian state in a general
N dimensional case.

5.1. Conditions of stationarity

Since the evolution equations of the parameters R(t) and P (t) are com-
pletely separated from the rest, the Gaussian state can be stationary only
when they are identically equal to zero. The condition that the shape is
constant in time has the form

d

dt
K̂ = 0 . (34)
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This condition guarantees that the normalization factor N(t) is constant in
time, because it depends only on the shape of the wave packet. Therefore,
as it is seen from the equation (19d), the imaginary part of the matrix K̂ is
traceless.

5.2. Solving the algebraic matrix Riccati equation

To find a stationary Gaussian state

Ψ0(r) ∼ exp
[

−m

2~
r · K̂0 · r

]

(35)

we have to solve the following algebraic matrix Riccati equation

0 = −iK̂2
0 + iV̂ −

[

Ω̂, K̂0

]

, (36)

where the matrix K̂0 describes the shape of a stationary Gaussian state.
It is worth to notice that if we find two matrices D̂(t) and N̂(t) which

satisfy the equations (21) and have a following form

D̂(t) = D̂0 · Ê(t) , (37)

N̂(t) = N̂0 · Ê(t) . (38)

then the matrix K̂0 defined by the equation analogous to (20)

K̂0 = − i

m
N̂0 · D̂−1

0 (39)

is a solution of the equation (36).
The problem of finding such matrices is not a hard task. After all, we

know that the columns of these matrices obey exactly the same equations
as the classical positions and momenta. Therefore, if we take the classical
eigenmodes as the columns of these matrices, then the matrix Ê(t) simply

will be a diagonal matrix with the elements eiωit and the matrices D̂0 and
N̂0 can be build from the amplitudes Ri and P i of the classical modes.

5.3. Proper choice of classical eigenmodes

The construction of the matrix K̂0 outlined above is not yet completed.
Still it is not clear which N from 2N classical eigenmodes one should use in
this construction. What are the requirements are necessary to make a good
choice? The answer is: one should use such a set of classical modes that
create a matrix K̂0 with a positive real part. It is a necessary requirement
because we want this matrix to describe a real Gaussian, square integrable
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wave packet. Of course it can happen, that this construction is impossible,
for example when one pair of characteristic frequencies is not real. In this
case, our system does not have integrable quantum states but the construc-
tion of a stationary (unphysical) state is still possible.

We should also notice here that even if the Hamiltonian is not bounded
from below it can still be possible to construct integrable quantum stationary
states of our system.

6. Other stationary states

6.1. Evolution of wave packets with constant shapes

It follows from the equations (19) that the motion of a Gaussian state

with a constant shape K̂(t) = K̂0, centered on the classical trajectory, is
obviously possible. The wave function which describes such a situation has
the form

Ψ(r, t) = N eiφ(t)/~exp

[

−m

2~
(r−R(t)) · K̂0 · (r−R(t)) +

iP (t) · r
~

]

, (40)

where the vectors R(t) and P (t) obey the classical equations of particle
motion (8). Therefore, let us choose as a solution the most general physical
trajectory generated by all possible modes of the system (12)

R(t) =

N
∑

i=1

(

λi Ri e
iωit + λ∗i R

∗

i e
−iωit

)

, (41a)

P (t) =
N
∑

i=1

(

λi P i e
iωit + λ∗i P

∗

i e
−iωit

)

. (41b)

Set of coefficients λi defines exactly one physical trajectory along which our
Gaussian solution with stationary shape moves. Wave function (40) is just
a multidimensional generalization of well known Glauber or coherent state.

Without loss of generality one can assume that all modes used during
construction of matrix K0 are labeled as Ri and P i. All other modes are
complex conjuncted to them.

Because Ri and P i are vectors used during construction matrix K̂0,
therefore from (39) the following relations hold

K̂0 · Ri = − i

m
P i , (42a)

K̂∗

0 · R∗

i =
i

m
P ∗

i . (42b)
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In addition from the equations (10) follows that for the amplitude vectors
Ri and P i of any mode of the system following relations hold

R∗

i · P j = Rj · P ∗

i , for i 6= j (43a)

R∗

i · P i = −Ri · P ∗

i , (43b)

P i = m
(

Ω̂ + iωi

)

· Ri , (43c)

im (ωi + ωj) Ri · P j = P i · P j −m2Ri · V̂ · Rj , (43d)

im (ωi − ωj) Ri · P ∗

j = P i · P ∗

j −m2Ri · V̂ · R∗

j . (43e)

Using relations (42) and (43) one can easily show that the wave function
(40) can be represented in the following way

Ψ(r, t) = N eiφ0 e−iΩ0t

× exp



−
N
∑

i=1

N
∑

j=1

1

2
λ∗i λ

∗

jR
∗

i · Â· R∗

je
−i(ωi+ωj)t+

N
∑

i=1

λ∗i r ·Â· R∗

je
−iωit



Ψ0(r),

(44)

where

Â = K̂0 + K̂∗

0 , (45a)

Ω0 =
1

4
Tr (Â) , (45b)

and φ0 is an arbitrary global phase factor.
From the definitions of modes vectors Ri and R∗

i it follows that any N
from 2N such vectors is a base in the N -dimensional space. Therefore, we
can represent any N dimensional vector as a linear combination of chosen
vectors. It means that there exist such coefficients xi that

r =

N
∑

i=1

xi(r)R∗

i . (46)

To make next steps more clear let us introduce new quantities

γij =
m

~
R∗

i · Â · R∗

j , (47a)

zi = λ∗i e
−iωit . (47b)

From the definition (47a) one has the symmetry property γij = γji.
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Using (47) one can represent the wave function of the coherent state (44)
as follows

Ψ(r, t)=Neiφ0e−iΩ0texp



−1

2

N
∑

i=1

N
∑

j=1

γijzizj +

N
∑

i

N
∑

j

γijxizj



Ψ0(r). (48)

This form of the wave function allows us to find all stationary states of
the system.

6.2. Expansion into stationary states

To get an expansion of the wave function (48) into stationary states
(eigenstates of the Hamiltonian of the system) we should use the concept
of, so called multidimensional Hermite polynomials. Properties of these
polynomials are well studied [11, 12] and a general information about them
can be found in the Appendix B. The generating function of N dimensional
Hermite polynomials Hγ

n1,...,nN
(x1, . . . , xN ) has a form

exp





N
∑

i=1

N
∑

j=1

γij(xi−
zi
2

)zj



=

∞
∑

(n1,...,nN )=0

zn1

1

n1!
· · · z

nN

N

nN !
Hγ

n1,...,nN
(x1, . . . , xN ) .

(49)
One can use this expansion in (48) and then our wave function becomes

Ψ(r, t) = Nei(Ω0t+φ0)
∞
∑

(n1,...,nN )=0

[

N
∏

i=1

(λ∗i )
ni

ni!
e−iniωit

]

×Hγ
n1,...,nN

(x1, . . . , xN ) Ψ0(r). (50)

Therefore, our wave function is a superposition of the stationary states
— the states whose evolution in time appears only in the evolution of the
phase. For each set (n1, . . . , nN ) we have defined exactly one (up to the nor-
malization factor) stationary state — the state which arise form the ground
state by the excitations in the modes (i-th mode is excited ni times)

Ψn1,...,nN
(r) ∼ Hγ

n1,...,nN
(x1, . . . , xN )Ψ0(r) . (51)

It is worth to notice that the only place where the scale factors λi appear
in (50) is the coefficient standing before the Hermite polynomial. Therefore,
the wave function (51) does not depend on it. It means that set of the
stationary states is independent on trajectory used during construction.
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It is obvious from the Schrödinger equation that the eigenvalue of the
Hamiltonian in the state described by wave function (51) is equal

~

(

N
∑

i=1

niωi +Ω0

)

.

All states with all possible sets of (n1, . . . , nN ) form a base in the wave-
function space. Because of the properties (B.5) and (B.7) of the multidi-
mensional Hermite polynomials the completeness of this set is guaranteed
and any quantum state of the system can be represented as a superposition
of these states

ψ(r, t) =

∞
∑

(n1,...,nN ) =0

Cn1,...,nN
(t)Ψn1,...,nN

(r) . (52)

At this moment it is worth while to notice that the construction outlined
above uses effectively only this modes which were not used during the con-
struction of the matrix K̂0. One can easily see that amplitudes Ri do not
play any role in the construction. It means that we have some kind of divi-
sion of roles. Half of the modes is responsible for the creation of a positive
defined matrix K̂0 and the ground state of the system. While the other half
gives the stationary state of the system.

This observation has a very nice physical interpretation. When the
Hamiltonian of the system is bounded from below, one can show that the
proper classical modes (which guarantee that the matrix K̂0 is positive de-
fined) have positive frequencies. Therefore, when we create excited states,
we have to use the modes with negative frequencies and their energy (eigen-
value of the Hamiltonian) is growing with ni. On the other hand, when the
Hamiltonian is not bounded from below, then some of the modes contained
in the matrix K̂0 have negative frequencies. Therefore, when exciting one
of these modes, one uses a mode with positive frequency and the energy of
the generated states diminishes — it is not bounded from below.

7. Conclusions

In this paper we have shown how the classical-quantum correspondence
for the linear systems is represented in the language of wave functions. The
dynamics of Gaussian states is completely determined by the dynamics of
a classical particle in a very unexpected way — the shape of Gaussian state
evolves like a quotient of the classical momentum and position. This obser-
vation enables us to construct a stationary Gaussian state of the system. In
addition the classical dynamics of the center of the Gaussian state, leads to
a complete set of stationary states.
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Appendix A

Two mathematical theorems

About the matrix Riccati equation

The matrix Riccati equation in n dimensions has the form

dK̂(t)

dt
= αK̂2(t) + K̂(t) · Ŵ + ŴT · K̂(t) + Û . (A.1)

where Ŵ and Û are n × n matrices and α is a constant parameter. The
Riccati theorem [5] says that K̂(t) is a solution of the equation (A.1) if

and only if there exist matrices Â(t) and B̂(t) which satisfy the following
equations

dÂ(t)

dt
= Û · B̂(t) + ŴT · Â(t) , (A.2a)

dB̂(t)

dt
= −αÂ(t) − Ŵ · B̂(t) . (A.2b)

and then the solution has the form

K̂(t) = Â(t) · B̂−1(t) . (A.3)

It is obvious, that if there exist matrices Â and B̂ which satisfy the equations
(A.2) then the matrix K̂(t) defined by an equation (A.3) is a solution of the

Riccati equation (A.1). On the other hand, if K̂(t) obeys the equation (A.1)

then one can define the matrices Â(t) and B̂(t)

B̂(t) = T exp



−
t
∫

0

(

αK̂(τ) + Ŵ
)

dτ



 , (A.4a)

Â(t) = K̂(t) · B̂(t) . (A.4b)

One can then show that such matrices obey the equations (A.2).
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About the eigenvalues of some matrix

Let us define 2n × 2n matrix M̂ as follows

M̂ =

(

Ŵ Â

B̂ ŴT

)

, (A.5)

where Ŵ , Â, B̂ are real n × n matrices and Â and B̂ are symmetric. Then
if λ is an eigenvalue of the matrix (A.5) then −λ is an eigenvalue of this
matrix too. It means that the characteristic polynomial is of the order n
in λ2. This theorem follows from the observation that the matrices M̂ and
−M̂ have the same set of eigenvalues because one has following reflexive
property

−M̂T = Ŝ · M̂ · Ŝ−1, Ŝ =

(

0 Î

−Î 0

)

. (A.6)

Appendix B

Multidimensional Hermite polynomials

Multidimensional Hermite polynomials used in Section 6.2 were intro-
duced in [11] and deep analysis of their properties was studied in [12]. Nowa-
days these polynomials are often used in quantum optics contexts [14,15] in
description of mixed and entangled states of electromagnetic filed.

Multidimensional Hermite polynomials in N dimensions are functions of
N variables x1, . . . , xN . Let us assume that γ̂ is symmetric and positive
N × N matrix. Then we define N dimensional Hermite polynomial of the
order (n1, n2, . . . , nN ) as follows

Hγ
n1,...,nN

(x1, . . . , xN ) = (−1)
PN

i=1
ni e

1

2
x·γ̂·x ∂n1

∂x1
n1

· · · ∂nN

∂xN
nN

e−
1

2
x·γ̂·x.

(B.1)
In one dimensional case it is a set of well known Hermite polynomials de-
fined as

Hn(x) = (−1)nex
2 dn

dxn
e−x2

. (B.2)

In analogy to standard Hermite polynomials multidimensional Hermite
polynomials can be also constructed with using a generating function which
has a following form

exp





N
∑

i=1

N
∑

j=1

γij

(

xi−
zi
2

)

zj



=
∞
∑

(n1,...,nN )=0

zn1

1

n1!
· · · z

nN

N

nN !
Hγ

n1,...,nN
(x1, ..., xN ) .

(B.3)
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It is just a generalization of well known generating function of Hermite
polynomials

exp
[

2z
(

x− z

2

)]

=
∞
∑

n=0

zn

n!
Hn(x) . (B.4)

Properties of the multidimensional Hermite polynomials are well studied
[11, 12]. It was proved that they are orthogonal in the following sense

∫

RN

dNx e−
1

2
x·γ̂·xHγ

n1,...,nN
(x)Hγ

m1,...,mN
(x) = πN/2

N
∏

i=1

2nini!δnimi
. (B.5)

and any function f(x1, . . . , xN ) of the class L2
w, that is to say function for

which the integral

∫

RN

dNx e−
1

2
x·γ̂·x |f(x1, . . . , xN )| (B.6)

is convergent, can be expanded in series of N dimensional Hermite polyno-
mials [13]

f(x1, . . . , xN ) =

∞
∑

(n1,...,nN )=0

fn1,...,nN
Hγ

n1,...,nN
(x1, . . . , xN ) , (B.7)

where

fn1,...,nN
=

(

N
∏

i=1

ni!

)−1
∫

RN

dNx e−
1

2
x·γ̂·xf(x1, . . . , xN )Hγ

n1,...,nN
(x1, . . . , xN ) .

(B.8)
Many other properties of the multidimensional Hermite polynomials may be
found (cf. for example [12]).
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