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The model of the neural network of nematode worm C. elegans result-
ing from the biological investigations and published in the literature, is
proposed. In the model artificial neurons Si ∈ (−1, 1) are connected in the
same way as in the C. elegans neural network. The dynamics of this network
is investigated numerically for the case of simple external simulation, using
the methods developed for the nonlinear systems. In the computations a
number of different attractors, e.g. point, quasiperiodic and chaotic, as well
as the range of their occurrence, were found. These properties are similar
to the dynamical properties of a simple one dimensional neural network
with comparable number of neurons investigated earlier.

PACS numbers: 87.10.+e, 05.40.+j

1. Introduction

Dynamics of artificial neural networks with different types of synaptic
connections was extensively investigated starting from the smallest networks,
for which analytical approach is successive (see e.g. [1,2]), to the large net-
works, for which only numerical calculations are possible [3–5]. It is well
known, however, that the topology of synaptic connections of such networks
is much less simple than the topology of the neural networks of living or-
ganisms. Only simple animals (e.g. some kinds of nematodes) have neural
networks consisting of relatively small number of neurons. For such animals
investigations of the topology and the values of synaptic connections, as well
as the neurons are possible using different methods e.g. application of mi-
croelectrodes registering action potentials generating by the firing neurons
or different types of microscopes [6]. C. elegans is a nematode worm of the
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length of 1.2mm, with almost transparent body and lives in soil. Its ner-
vous system consists of 302 neurons, each of the size approx. 5 µm. For
such small cells using microelectrodes for the investigations of an activity of
neural network is not effective. For the observations of C. elegans (in par-
ticular its neural network) electron microscope combined with the optical
microscope with differential interference contrast (DIC) can be used. It is
important that this special optical microscope (owing to the transparency
of the body) enables to observe living C. elegans and register an life activity
of its neuron system [7].

Dynamical properties of the artificial neural network with the same struc-
ture as the living neural network of C. elegans are investigated in this net-
work using the method of numerical simulations and analysis suitable for
nonlinear systems.

2. The model

For the years interests in investigations of C. elegans, reported in sci-
entific literature, is very large. Lately some sources with the databases
containing description of neural network of C. elegans have appeared in
the literature. In our work we have decided to use the data obtained in
Cybernetic Caenorhabditis elegans Project (CCeP) performed at the Keio
University in Japan and published in internet [8]; some informations were
found also in [9, 10].

Sources of data in the database of synaptic connections are figures and
tables in the two papers: Albertson and Thompson [9] — describe synaptic
connections and structure in the pharynx and White et al. [10] — describe
nervous system of the body except pharynx. Database of synaptic connec-
tion was constructed in CCeP program under the three policies: there should
be one-to-one correspondence between information provided by the original
papers and that described in various files in the database; the database
should provide necessary information for reconstruction of the network’s
topology, as in the original paper; the database should provide sufficient
information for any user to edit their own data file according to their pecu-
liar request [8, 11]. Data in database are written in ASCII text files. Each
synaptic connection is described by several items e.g.: the name of the ref-
erence neuron, the location and symbol of the synaptic contact, the name of
the partner neuron, a comment on an ambiguous or questionable synaptic
contact [8, 11].

In the construction of the model of artificial network following assump-
tions were made. All neurons (N = 302) are numbered starting from the
beginning of the list in the database and to each name of neuron a sequent
number is assigned. In description of one synaptic connection the names
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of reference and partner neuron are changed into numbers (another words:
neuron i-th is connected with neuron j-th). This procedure is applied to the
body and the pharynx of the worm. There were however some discrepancies
in two databases presented in [11]. The data in these databases agrees just
for the first N1 = 267 neurons i.e. the part of the neural network located in
the body of C. elegans without the pharynx. Therefore, we have performed
most of calculations for the neural network of C. elegans without pharynx.

We assume that the current states of neuron Si, in the network are as
follows:

Si(t + 1) = tanh[ghi(t) + I(t)] , (1)

where:

hi(t) =
N∑

j=1

aijJijSj (2)

is the value of the local field, g is the gain parameter, aij is element of the
adjacency matrix (equal 1 when neuron i and j are connected, 0 otherwise)
and I(t) = A sin(2πt/T ) is the external stimulation acting on each neuron.
It was assumed in our calculations, that the synaptic connections Jij between
the neurons i and j have a constant value or the random values drawn from
the uniform distribution in [−1, 1]. Synchronous updating of the states of
neurons is used for the calculation of the time evolution of the network. As a
starting configuration {Si(0)} random values of all neurons Si ∈ (−1, 1) were
mostly assumed. In some cases, uniform initial conditions {Si(0) = const.}
were also used. Assumptions for the present model are similar to those used
for 1-dimensional model of neural network discussed in [12].

Numerical simulations of the dynamics of the system were performed
for the control parameters: gain g and the amplitude of the external stim-
ulation A. In the investigation of the local network dynamics, i.e., dy-
namics of a single neuron embedded in the network, activities of all neurons
Si(t1) (i = 1, 2, 3, . . . , N) in a chosen time t1 and return maps Si(t+T )[Si(t)],
showing the character of the Poincaré sections, were calculated, while for the
observation of the global dynamical properties of the whole network average
deviation

σ(t) =
1

N

N∑

i=1

[Si(0) − Si(t)]
2 (3)

and the return map σ(t + T )[σ(t)] were used.
Numerical experiments were made for N1 = 267 (the body of C. elegans

without pharynx) and a part of calculations for N = 302 (the whole body).
Period of external stimulation was T = 24, the behavior of the network for
other values of T was also monitored.
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3. Results and discussion

The statistical properties of the neural network was characterized using
the quantities typical for the complex network (see e.g. [13, 14]). We have
calculated that the average number of neighbors of each neuron is 〈k〉 = 13.7
and the clustering coefficient C = 0.23. This value is close to the value
C = 0.28 found for C. elegans by Kim [4].

Following the description of the neural network of C. elegans without
the pharynx the number of neighbors of each neuron was calculated. Next,
the neurons were delivered to the classes with respect to these numbers and
the distribution of the neighbors of neurons P (k) was calculated (Fig. 1).
As results from Fig. 1, it seems that the neural network under investigation
has no scale free properties. However, it should be noticed that calculations
of P (k) refer to only one neural network (without pharynx) described in
the database [8]. Taking into account this additional part of the network
the conclusion that the neural network has no scale free properties may be
modified. The number of neighbors for all neurons in the body without and

Fig. 1. The distribution P (k) of the neighbors of neurons in the body of C. elegans

without pharynx.

with the pharynx (N1 = 267 and N = 302, respectively) are shown in Fig. 2.
As we see, the neurons with a small (2, 3) and large (above 40) number of
neighbors are located in the body, but in the pharynx number of neighbors
does not exceed 18. It is worth while to notice that experimental investi-
gations of the properties of a human brain show that the neural network
has the scale free and small world properties [19]. However, results obtained
in [19] were averaged over a number of experiments, while our calculations
refer to the neural network of one nematode described in CCeP.

Let us examine the dynamic properties of the network. One of the prop-
erties of neural networks is pattern recognition, in which the network, as a
result of its time evolution, reaches point attractor i.e. all neurons have cer-
tain states corresponding to one of the patterns memorized in the network.
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Fig. 2. The number k1 of neighbors of the i-th neuron in the C. elegans without

pharynx (black line) and with pharynx (grey line — the left part of the curve it is

superimposed on the solid line).

During further time evolution the network remains in this point attractor.
Thus, the number of point attractors of the network can be a measure of
the memory capacity of the neural network. To study this property we have
investigated the network of the nematode’s body without pharynx for the
case of not active external stimulation (A = 0) and the synaptic connections
with a chosen constant values (−0.5 or −1.0). In such a case, the network
settles on one of a number of coexisting point attractors. The position of
each attractor in the space of all network states depends on the value of
synaptic connections, the value of the gain parameter g and the initial val-
ues of neurons Si(0). The number of these attractors is very large (and is

Fig. 3. The examples of the activities Si of the neurons in the case of coexisting

point attractors and no external stimulation A = 0. Different initial values of

neurons Si(0), different and constant values of synaptic connections Jij = −0, 5,

−1.0 and −1.0 and gain parameter g = 0.5 were used in the cases a, b and c,

respectively. (The points corresponding to the states of the neurons were connected

with line).
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less than the number of the state of the network. Three examples of such
point attractors are shown in Figs. 3(a), (b), (c), where the activities of neu-
rons Si (i=1,2,. . . ,N1) corresponding to three different point attractors are
shown. Each attractor was obtained for different chosen value of synaptic
connections Jij and gain parameter g. Comparing Figs. 3(a) and (b) it can
be seen that in the case (a) more neurons have the states close to minimal
value S = −1, while in the case (b) more neurons have the values close to
maximal value S = 1. In the case shown in Fig. 3(c) numbers of neurons
with the values S = −1 and S = 1 are comparable (and this attractor seems
to correspond to more complex pattern than those from Figs. 3(a) and (b)).

Dynamical properties of the network are different for the case of active
external stimulation. For the case of external sinusoidal stimulation with
the amplitude A = 1 and constant value of synaptic connections all neurons
during their time evolution follow the stimulation, however, when the ran-
dom initial conditions of the neurons Si(0) are applied, their activities Si(t),
i = 1,2,3,. . . ,N1 are different. In Fig. 4 these activities are shown for times
t = T/3; 2T ; 3T , the period of stimulation T = 24 and g = 0.35. As we
see, the curve for t = 2T overlaps the curve for t = 3T which means that the
states of all neurons after ∆t = T have the same value. On the other hand,
after ∆t 6= mT (where m = 1,2,3,. . . ) neurons have different values — as
we see comparing the curve for t = 2T with the curve for t = T/3. Thus
we can state that for the values of control parameters the work oscillates
periodically with the period equals to the period of external stimulation T .

Fig. 4. The activities Si of neurons for the case of a constant value of synaptic

connections, random initial values of neurons, g = 0.35, A = 1 and three times

t = T/3; 2T and 3T, as shown in the inset, where used. (The curves for t = 2T

and t = 3T are superimposed).
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For the case of random values of synaptic connections it is also possible
to obtain quasiperiodic evolution of the network. In such a case the oscil-
lations of the network are more complex and some additional characteristic
frequencies (besides the frequency of the stimulation) appear in the oscilla-
tions. This type of time evolution of the network can be easily found using
return maps Si(t+T )[Si(t)] or σ(t+T )[σ(t)], because different kind of loops
(sometimes very complex) correspond to such evolution.

Quasiperiodic evolution for the case of no external stimulation (A = 0),
is presented in Figs. 5(a) and (b), where the return maps: Si(t + T )[Si(t)]
for a chosen neuron (i = 45) and σ(t + T )[σ(t)], have the form of loops [13].
When the external stimulation is present quasiperiodic evolution also ap-
pears. In Fig. 6 the return map σ(t + T )[σ(t)] for the amplitude of external
stimulation A = 2.2 and gain parameter g = 0.8 is shown. More complex
loop than in the previous case shows that in this case the number of char-
acteristic frequencies is grater. For the case of constant value of synaptic
connections quasiperiodic evolution of the network was not found.

Fig. 5. Quasiperiodic evolution of the network for the case of random values of

synaptic connections and A = 0; a — the return map Si(t + T )[Si(t)] for a chosen

neuron (i = 45); b — the return map σ(t + T )[σ(t)].

It is well known that normal dynamics of parts of human brain have
chaotic character (e.g. neurons connected with the smell sensors) [15]. In
the neural network of C. elegans chaotic evolution can be observed also,
however, similarly to the case of quasiperiodic evolution, only for the case of
random values of synaptic connections. This type of evolution is confirmed
in Figs. 7(a) and (b), where the return maps σ(t + T )[σ(t)] (registered in
some, sufficiently long time interval), consist of the randomly located points.
This form of return map is typical for chaotic dynamics. In Figs. 7(a) and
(b) the values of the amplitude of external stimulation were A = 0 and
A = 1, respectively. For other values of A also the chaotic evolution of the
network was observed. This type of evolution depends also on the values of
the gain parameter.
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Fig. 6. The return map σ(t+T )[σ(t)] for the quasiperiodic evolution of the network.

The random values of synaptic connections, external stimulation A = 2.2 and

g = 0.8, were used.

Fig. 7. Return maps σ(t + T )[σ(t)] for the case of chaotic evolution; (a) — no

external stimulation (A = 0); (b) — external stimulation A = 1.0. The random

values of synaptic connections and gain parameter g = 0.8, were used.

The ranges of the different types of network dynamics, as a function
of the control parameters A and g (and random values of synaptic connec-
tions), are shown in Fig. 8. The limits between the ranges corresponding to
different types of dynamics are not sharp. (For the defined value of g and
increasing values of A the limiting point — triangle — was located if more
then 20% computer runs belong to the intermediate range, and square was
located if more then 80% computer runs belong to the periodic dynamic).
It can be seen that for the gain parameter g approx. greater than 0.37 the
chaotic motion occurs when the value of the amplitude of external stimula-
tion A is sufficiently small. For the larger values of A, in the intermediate
region between periodic and chaotic evolution, quasiperiodic evolution as
well as the evolution with the period 3T (where T is the period of external
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stimulation) are observed. When the amplitude A is sufficiently large the
periodic oscillations of the network are observed and they obey the external
stimulation.

Fig. 8. The ranges of the different types of the network dynamics as a function of

the control parameters A and g and the random values of synaptic connections.

In the intermediate range quasiperiodic or periodic evolution with the period 3T ,

occur. Straight lines were fitted to the calculated points to show the approximate

limits of the ranges.

It can be seen from Fig. 8 that for some value of A, with the increasing
values of g, the region of quasiperiodic evolution is the transition region
between the periodic and chaotic regions. It is worth while to notice that the
route to chaos via quasiperiodic motion is one of the main routes to chaos
as observed earlier in a number of dynamical systems. In particular the
route to chaos by period doubling and bifurcations appearing for a specific
values of the gain parameter, was observed in a simplest neural network with
N = 2 neurons by Wang [1]. Different routes to chaos (including the route
via quasiperiodic motion [2]) were found in larger neural network [13,16,17].
In our investigations, however, instead of the period doubling, the route
to chaos by the increase of the period of time evolution of certain neurons
from T to the value 3T , was found. This behavior corresponds to Li–Yorke
theorem known as “period 3 implies chaos” [12, 18].

It is interesting that the results of investigations of the dynamics of the
model of neural network with the same topology of synaptic connections as
in C. elegans, is similar to the dynamics of a simple one dimensional network
described in [12]. In particular, point, periodic, quasiperiodic attractors, as
well as the chaotic evolution of the network, were found in both cases. The
route to chaos has a mixed character — by quasiperiodic evolution or by
increase of the period of oscillations to 3T . The current realization of the
route to chaos is determined by the choice of random initial state of the
network and the choice of the distribution of random synaptic connections.
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In conclusion it can be noticed that the occurrence of the four types
of attractors — point, periodic, quasiperiodic and chaotic — shows rather
rich dynamics of the neural network with the topology of the neural net-
work of C. elegans. It should be stressed however, that we used very simple
model of a single neuron and external stimulation. Our results may de-
liver only preliminary information about real dynamics of C. elegans and
future investigations in this field are necessary. In particular finding the re-
lations between the attractors of the neural network and the life functions of
C. elegans (e.g. motion of the body or pattern recognition) seems to be very
interesting.
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