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1. Introduction

The search for the Higgs boson is one of the highest priorities for the
CERN Large Hadron Collider (LHC) physics program [1]. The dominant
production channel in the low mass range, mH

<∼ 140GeV, is the gluon
fusion, mediated at lowest order in the Standard Model (SM) by a heavy
(mainly top) quark loop. In the considered mass range, experimental searches
at the LHC will concentrate on the rare two-photon decay mode H → γ +γ.
In the absence of any constraints imposed on the events, the bulk of the cross
section will be at relatively low transverse momenta of the photon pair, where
the background is large. Therefore, one needs precise theoretical predictions
for the transverse momentum (pT) distribution of the produced Higgs boson.
A possible way to improve the signal significance for Higgs discovery in the
considered mass range is to study the γ + γ + jet(s) final states [2]. This
process will share many features, in particular regarding the importance of
the higher order perturbative corrections, with the more inclusive reaction
pp → H +X at large pT, since in most cases a high-pT Higgs will be accom-
panied by a recoiling jet. It is thus of interest to consider pT distributions
of Higgs produced in the gluon fusion process also at higher values of pT.
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The core of the data taken at the LHC will be, however, coming from
the Standard Model processes which have higher production rates than the
Higgs production. Electroweak gauge boson production pp → V + X with
V = W±, Z, γ is a good example of such process. In fact, measurement of
the pT distribution of the produced boson V is expected to be one of the
early benchmarks established at the LHC. Due to its high rate and distinct
experimental signature, W - and Z-boson production has even been proposed
as a way to measure the LHC luminosity [3]. Apart from being a crucial
measurement for the precise determination of the W -boson mass, MW , the
cross section for electroweak gauge boson production provides an important
means to constrain information on the parton distribution functions.

Regarding the QCD corrections, the pT distributions for the Drell–Yan
type processes pp → V, H + X are known up to NLO, i.e. O(α2

S) accu-
racy [4]. The corresponding inclusive total cross sections are known up to
NNLO, which is also O(α2

S) [5]. Due to the high complexity of the calcu-
lations, the results for the NNLO corrections to the gg → H + X process
were obtained in the large-top-mass mt limit, i.e. mt → ∞. In this limit the
top quark loops may be replaced by point-like vertices, and the Feynman
rules are given by an effective Lagrangian. This method is known to provide
a very good approximation of the exact result for total cross section in the
mass range mH < 2mt [6].

It is a general feature of perturbative calculations in QCD that close to
a phase space boundary partonic hard-scattering cross sections acquire large
logarithmic corrections. These corrections are related to soft and collinear
gluon emission and arise from cancellations between virtual and real con-
tributions at each order in perturbation theory. When the transverse mo-
mentum carried by the produced boson is very small, pT ≪ Q, the recoil
corrections involving logarithms of ratio p2

T/Q2, grow large. At large pT,
in the limit when ŝ approaches a kinematical boundary for a production of
a particle with a given momentum pT, the threshold corrections can become
important. In inclusive total cross sections, threshold corrections involve
logarithms of 1 − z with z = Q2/ŝ, ŝ being the partonic center-of-mass en-
ergy and Q the invariant mass of the boson. Due to the presence of these
logarithmic corrections, sufficiently close to the phase-space boundary, i.e.

in the limit of soft and/or collinear radiation, fixed-order perturbation the-
ory is bound to fail. A proper treatment of higher-order corrections in this
limit requires resummation of logarithmic corrections to all orders.

Due to the high center-of-mass energy and design luminosity, the LHC
will also offer a unique possibility to explore production of gauge bosons
with very large pT. Although on the basis of simple arguments regard-
ing the strength of coupling constants one might expect electroweak (EW)
corrections to be in general much smaller than QCD corrections, for these
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classes of processes EW corrections from virtual boson exchange also be-
come important. Owing to the finite weak-boson masses, the real emission
of a soft/collinear Z or W boson can be observed as a separate process and
hence does not need to be included in the definition of physical observables.
Thus, in contrast to mass singularities in massless gauge theories such as
QED or QCD, the EW mass singularities of virtual origin are not necessar-
ily compensated by corresponding mass singularities from real weak-boson
radiation. The dominant contribution to the EW correction is given by the
logarithms of the ratio (ŝ/M2

W ). Typically, at
√

ŝ ≃ 1 TeV these corrections,
also known as electroweak Sudakov logarithms, are estimated to yield one-
loop corrections of tens of per cent and two-loop corrections of a few per
cent and need to be included in the analysis.

2. Resummation approaches at small and large

transverse momentum

2.1. Recoil and joint resummation at small pT

A formalism to resume all terms of the perturbation series which are at
least as singular as 1/p2

T when pT → 0 in the pT distribution for the Drell–
Yan process pp → V + X has been proposed by Collins, Soper and Ster-
man (CSS) [8]. The resummation is performed in the Fourier conjugate of
pT-space, b-space, what allows to built the transverse momentum conser-
vation condition into the formalism [9]. At the parton level the resummed
part of the cross section is of the form

dσ̂res

dq2
T

=
σ0

2

∞
∫

0

bdb J0(qTb) eS(b,Q2) . (1)

The Sudakov factor S(b,Q2) in Eq. (1) reads

S(b,Q2) = −
Q2

∫

b2
0

b2

dµ̄2

µ̄2

[

ln
(Q2

µ̄2

)

A(αS(µ̄2)) + B(αS(µ̄2))
]

, (2)

A(αS) =

∞
∑

i=1

(αS

2π

)i
A(i) B(αS) =

∞
∑

i=1

(αS

2π

)i
B(i) (3)

with b0 = 2exp(−γE). The first few coefficients of the perturbative series (3)
can be obtained, both for quark and gluon initial states [11], from the exact
fixed-order perturbative calculation in the high pT region by comparing the
logarithmic terms therein with the corresponding logarithms generated by



2322 A. Kulesza

the first few terms of the expansion of exp(S(b,Q2)) in (1). At larger values
of pT, pT ∼ Q, the logarithmic pieces will no longer dominate and to obtain
correct predictions for the full pT spectrum one has to match the resummed
expression with the full fixed-order result [8,10]. The numerical predictions
for the massive gauge boson production at the LHC obtained using the CSS
formalism can be found in [12], whereas Higgs boson production via gluon
fusion at the LHC was studied in [13].

Although the b-space method succeeds in recovering a finite, positive
result in the pT → 0 limit, it suffers from several drawbacks. For example,
since the integration in (1) extends from 0 to ∞, it is impossible to make
predictions for any pT without having a prescription for how to deal with
the non-perturbative regime of large b. One prescription is to artificially
prevent b from reaching large values by replacing it with a new variable

b∗ = b/
√

1+b2/b2
lim, and by parametrising the non-perturbative large-b re-

gion in terms of the form factor FNP [8], which is generally a Gaussian in b.
The result of the most up-to-date fits for FNP can be found in [14]. A re-
cent proposal to include an additional function of the partonic momentum
fractions x in the FNP [12], resulting in a significant broadening of the pT

spectrum for electroweak gauge boson production at the LHC, awaits further
investigation [15].

To deal with the technical drawbacks of the b-space method, it has been
proposed to resum the logarithms directly in the pT-space. This method
relies on deriving an approximation of the b-space formalism and various
techniques, each selecting and resumming different subsets of logarithmic
terms, have been developed [16]. The numerical predictions obtained using
the pT-space method for the Higgs boson production via gluon fusion at the
LHC can be found in [17].

The single SM boson production at hadron colliders has been also de-
scribed in the framework of unintegrated parton distribution functions [18].
It is then possible to show the correspondence between this approach and the
standard CSS b-space resummed formula for the leading contributions i.e.

including the first-order coefficients in the expansion of the A,B functions,
cf. Eq. (3).

The soft and collinear gluon emission is also responsible for another class
of contributions in the theoretical expressions in production processes of the
Drell–Yan type. In the limit of partonic center-of-mass energy approaching
the invariant mass Q of the produced boson, i.e. the ratio z = Q2/ŝ → 1
the threshold corrections contribute the dominant part of the cross-section.
At O(αn

S), the leading logarithmic (LL) contributions are of the form

αn
S ln2n−1(1 − z), the next-to-leading (NLL) are of the form αn

S ln2n−2(1−z)
etc. A proper treatment of higher-order corrections in this limit requires



Transverse Momentum Distributions for the Standard Model . . . 2323

resummation of logarithmic corrections to all orders and resummation tech-
niques for threshold corrections are well established in this case [19]. How-
ever, resummation of recoil and threshold effects is known to lead to op-
posite effects: suppression and enhancements of the partonic cross-section,
respectively. A full analysis of soft gluon effects in transverse momentum
distribution should, therefore, if possible, take both types of corrections si-
multaneously into account. A joint, simultaneous treatment of the threshold
and recoil corrections was first introduced in [20]. It relies on a novel refac-
torization of short-distance and long-distance physics at fixed transverse
momentum and energy [20]. Similarly to standard threshold and recoil re-
summation, exponentiation of logarithmic corrections occurs in the impact
parameter b-space [8], Fourier-conjugate to transverse momentum pT-space
as well as in the Mellin-N moment space [19], conjugate to z-space. The
resulting expression respects energy and transverse momentum conservation.

In the framework of joint resummation, the Sudakov exponent at the
NLL accuracy has a classic form known from recoil resummation

Sjoint(N, b,Q, µ) = −
Q2

∫

Q2/χ2

dk2
T

k2
T

[

A(αS(kT)) ln

(

Q2

k2
T

)

+ B(αS(kT))

]

. (4)

The quantity χ(N, b) appearing in the lower limit of integration in (4) or-
ganises the logarithms in N and b. The LL and NLL logarithmic terms in
the threshold limit, N → ∞ (at fixed b), and in the recoil limit b → ∞ (at
fixed N) are correctly reproduced with the following choice of the form
of χ(N̄ , b̄) = b̄ + N̄/(1 + η b̄/N̄ ), where η is a constant and we define
N̄ = NeγE , b̄ ≡ bQeγE/2 with γE the Euler constant. The coefficients in
the expansions of the functions A and B in (4) are the same as in the
standard recoil resummation. By incorporating the full evolution of parton
densities [21], the jointly resummed cross section correctly includes also the
leading αn

S ln2n−1(N̄ )/N terms to all orders. More details on the joint re-
summation method, in particular definition of the inverse Mellin and Fourier
required to avoid singularities associated with the Landau pole, and match-
ing with the fixed-order pT distributions can be found in Ref. [21]. A full
phenomenological analysis of Z boson production at the Tevatron in the
framework of joint resummation can be found in [21], whereas Higgs boson
production at the LHC was studied in [22]. Direct-γ production for fixed-
target and pp (pp̄) scattering experiments has been analysed in [20, 23].
A comparison of resummed predictions for Higgs production, described in
more details in Refs. [24], including also predictions provided by the Monte
Carlo generators, is shown in Fig. 1.
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Fig. 1. The predictions for the production a 125 GeV mass Higgs boson at the

LHC. Figure taken from [24].

2.2. Threshold resummation at large pT

At large pT, threshold corrections to the pT distribution can be resummed
on their own. As in the fully inclusive case, threshold logarithms also domi-
nate the cross section when the transverse momentum of the produced boson
is large, even though they are of a somewhat different form. In the pT distri-
bution, when the cross section is integrated over all rapidities of the boson,
they occur in the partonic cross sections as αk

S lnm(1 − ŷ2
T ), m ≤ 2k, where

ŷT = (pT + mT)/
√

ŝ with mT =
√

p2
T + m2

T. Also, unlike the fully-inclusive

case, for a boson produced at large pT there need to be a recoiling parton
already in the Born process, whose color charge plays a role for the structure
of the resummed expression. The resummation of threshold logarithms for
high-pT Higgs boson production was considered in [25], whereas Ref. [26] is
concerned with high-pT W production in hadronic collisions. Besides the
obvious differences related to the different final state considered, the two
calculations also differ in the technical treatment of the resummed formu-
las. In Ref. [26] a NNLO expansion of the resummed expression is obtained
and used, while in [25] the full NLL-resummed expression was kept. In the
massless limit the structure of the resummed expression is similar to that
for prompt-photon production in hadronic collisions [27].

At large pT, pT
>∼ mt, the large mt approximation is known to deterio-

rate [28], and a full calculation that includes all effects from the top quark
loop is required. Fortunately, the large logarithms are insensitive to the
structure of the Higgs-gluon coupling since they are associated only with
emission of soft and collinear gluons from the external lines. Therefore,
even though the predictions for the cross sections might not be entirely ap-
plicable at large pT, one can be confident that K-factors, defined as ratios
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KA/B ≡ dσA/dpT

dσB/dpT

, generally will be. The ratios of the NLO and NLL dis-

tribution to the LO distribution, along with NLL to NLO ratio, are shown
in Fig. 2. As can be seen from the dotted line for KNLL/NLO, resummation
predicts an increase of about 10% of the cross section beyond NLO. The
results presented in Fig. 2 should be taken into account in the analysis of
future LHC data.

Fig. 2. K-factors, as defined in the text, for the Higgs boson pT distribution at the

LHC. Figure taken from [25].

3. Electroweak corrections to transverse momentum distribution

of gauge bosons

In the region
√

ŝ ≫ MW ≃ MZ the EW corrections are strongly en-
hanced by logarithmic mass singularities. At O(αL) the LL corrections
are of the form αL ln2L(ŝ/M2

W ) while the NLL corrections are of the form

αL ln2L−1(ŝ/M2
W ), etc. These EW logarithms originate from soft/collinear

emission of virtual EW gauge bosons off initial- or final-state particles.
In the calculation of the full one-loop corrections to the hadronic produc-

tion of Z bosons [29] and the hadronic production of photons [30] at large
pT only weak virtual corrections are considered. For the W boson produc-
tion [32] also the electromagnetic (virtual and real) contributions need to be
calculated together with the weak corrections. Of course, to achieve reliable
predictions at high pT, the NLO QCD corrections need to be taken into
account as they can amount to several tens of per cent correction for these
processes. Numerical results for the one-loop corrections to the Z-boson and
photon production processes can be also found in Ref. [33].
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The NLL approximation of the full result, valid in the high energy region,
is obtained from the Born result by multiplying it with a global factor. In
particular, for the unpolarised squared amplitude for qq̄ → Zg we have [31]1

∑

pol

|Mqq̄|2 = 64π2ααS
t̂2+ û2+ 2M2

Z ŝ

t̂û

[

A0 +
( α

2π

)

A1 +
( α

2π

)2
A2

]

. (5)

The amplitude for the other partonic subprocess contributing to the hadronic
cross sections are easily obtained from Eq. (5) using crossing symmetry and
CP transformations. The tree-level contribution A0 to Eq. (5) reads

A0 =
∑

λ=L ,R

(

IZ
qλ

)2
with IZ

qλ
=

cW

sW

T 3
qλ

− sW

cW

Yqλ

2
, (6)

where T 3
qλ

and Yqλ
are the weak isospin and hypercharge for left- (λ = L)

and right-handed (λ = R) quarks, and we use the shorthands cW = cos θw

and sW = sin θw for the weak mixing angle θw. The O(α) contribution reads

A1 = −
∑

λ=L,R

IZ
qλ

[

IZ
qλ

Cew
qλ

(

L2
ŝ − 3Lŝ

)

+
cW

sW
3
T 3

qλ

(

L2
t̂
+ L2

û − L2
ŝ

)

]

, (7)

where Lr̂ ≡ ln(|r̂|/M2
W ) and Cew

qλ
= Y 2

qλ
/(4cW

2)+Cqλ
/sW

2 are the eigenvalues
of the electroweak Casimir operator for quarks, with CqL

= 3/4 and CqR
= 0.

The size of the logarithmically enhanced contributions grows with energy
and for transverse momenta of hundreds of GeV also the two-loop logarithms
become important. At the NLL accuracy we have

A2 =
∑

λ=L,R

{

1

2

(

IZ
qλ

Cew
qλ

+
cW

sW
3
T 3

qλ

)

[

IZ
qλ

Cew
qλ

(

L4
ŝ − 6L3

ŝ

)

+
cW

sW
3
T 3

qλ

(

L4
t̂
+ L4

û − L4
ŝ

)

]

−
T 3

qλ
Yqλ

8sW
4

(

L4
t̂
+ L4

û − L4
ŝ

)

+
1

6
IZ
qλ

[

IZ
qλ

(

b1

cW
2

(

Yqλ

2

)2

+
b2

sW
2
Cqλ

)

+
cW

sW
3
T 3

qλ
b2

]

L3
ŝ

}

, (8)

1 Since at two-loop level the purely weak corrections cannot be isolated from the com-

plete electroweak corrections in a gauge-invariant way, we have to consider the com-

bination of weak and electromagnetic virtual corrections. The latter are regularised

by means of a fictitious photon mass λ = MW .
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where b1 = −41/(6cW

2) and b2 = 19/(6sW

2) are the one-loop β-function
coefficients associated with the U(1) and SU(2) couplings, respectively. The
expressions presented here have been obtained using results of Refs. [34].
For analogous expressions for the W and photon production the reader is
referred to Ref. [35] and Ref. [30], respectively.

The relevance of the EW effects for the transverse momentum distribu-
tions of the gauge bosons produced at the LHC is demonstrated in Fig. 2,
where the relative NLO (full EW correction) and the NNLO corrections (in
the NLL approximation), integrated over pT starting from pT = pcut

T , are
presented as a function of pcut

T . This is compared with the statistical error,
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Fig. 3. Relative NLO (solid) and NNLO (dotted) corrections w.r.t. the LO predic-

tion and statistical error (shaded area) for the unpolarised integrated cross section

for (left upper) pp → Zj, (left lower) pp → γj and (right) pp → Wj,at
√

s = 14 TeV

as a function of pcut

T
. Figures taken from [29,30, 35].

defined as ∆σstat/σ = 1/
√

N with N = L × σLO. A total integrated lumi-
nosity L = 300 fb−1 for the LHC is assumed. It is clear from Fig. 3, that the
size of the one-loop (two-loop logarithmic) corrections is much bigger than
(comparable to) the statistical error for both the Z-, W -boson and the γ
production. These results do not include contributions coming from real ra-
diation of the massive gauge bosons (as well as photons in the case of Z and
γ production). Such contributions have been calculated in Ref. [36] where
their effect on the pT distributions of Z-bosons and photons at the LHC was
investigated. Although the contributions are positive, the net corrections
remain of order of tens of percents, underlining the importance of the EW
effects at hadron colliders in general, and specifically their impact on the pT

distributions of the EW gauge bosons.
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