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The usefulness of recursive equations to compute scattering matrix el-
ements for arbitrary processes is reviewed. The importance of the recently
presented reduction method at the integrand level that opens the possibil-
ity to use efficiently recursive equations for one-loop amplitude and cross
sections, is also briefly discussed.
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1. Introduction

Recursive equations to compute scattering matrix elements have been
used extensively over the last years in order to obtain results for multi-leg
amplitudes. Their history started essentially with the work of Berends and
Giele [1], who were able to prove the conjectured simple all-n form of Parke
and Taylor [2] for the MHV amplitudes in QCD. The recognition of their
usefulness has been expanded recently by the discovery of a new class of
recursive equations, by Britto, Cachazo and Feng [3] and Witten [4].

In this paper we are considering the Dyson–Schwinger (DS) recursive
approach [5–8], and show how this can be used as a general framework for
matrix elements computation. We are also briefly reviewing the possibility
of extending the approach at the one loop level.
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2. The Dyson–Schwinger approach

The traditional representation of the scattering amplitude in terms of
Feynman graphs results to a computational cost that grows like the number
of those graphs, therefore as n! (at tree order), where n is the number of
particles involved in the scattering process.

An alternative1 to the Feynman graph representation is provided by the
Dyson–Schwinger approach [7]. Dyson–Schwinger equations express recur-
sively the n-point Green’s functions in terms of the 1−, 2−, . . . , (n−1)-point
functions. In the framework of a theory with three- and four-point vertices
the DS equations are rather simple and their diagrammatic representation
is given below, for 1 → n [12–17] amplitude:

= + +

+ + +

Omitting the contribution of the second line in the above formula is
equivalent to restrict ourselves at tree order. In order to get an idea of the
actual mathematical form of these equations, let as consider the simplest case
where we are interested to “count graphs”, so by dropping all propagators,
couplings, wave-functions, etc., we end up with the following equation:

a(n) = δn,1 +
1

2!

∑ n!

n1!n2!
a(n1)a(n2)δn1+n2,n

+
1

3!

∑ n!

n1!n2!n3!
a(n1)a(n2)a(n3)δn1+n2+n3,n

with the initial condition a(0) = 0; a(n) is nothing more than the number
of Feynman graphs, contributing to the 1 → n matrix element.

The computational cost of DS equations grows like ∼ 3n, which essen-
tially counts the steps used to solve the recursive equations. Obviously for
large n there is a tremendous saving of computational time, compared to
the n! growth of the Feynman graph approach.

1 For other alternatives see [10,11].
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Color representation or color decomposition of the amplitude is a major
issue when dealing with multi-parton processes. Let us consider n-gluon
scattering with external momenta {pi}

n
1 , helicities {εi}

n
1 and colors {ai}

n
1 of

gluons i = 1, . . . , n. As is well known the total amplitude can be expressed
as a sum of single trace terms [18]:

M ({pi}
n
1 , {εi}

n
1 , {ai}

n
1 )=2ign−2

∑

I∈P (2,...,n)

Tr (ta1taσI (2) . . . taσI (n))AI({pi}
n
1 , {εi}

n
1 ) ,

where σI(2 : n) represent the I-th permutation of the set {2, . . . , n} and
Tr(ta1 taσI (2) . . . taσI (n)) represents a trace of generators of the SU(Nc) gauge
group in the fundamental representation. For processes involving quarks
a similar but much more cumbersome expression can be derived [18].

One of the most interesting aspects of this decomposition is the fact that
the AI({pi}

n
1 , {εi}

n
1 ) functions (called dual, partial or color-ordered ampli-

tudes), which contain all the kinematic information, depend on the permu-
tation and are gauge invariant and cyclically symmetric in the momenta
and helicities of gluons. The color ordered amplitudes are simpler than the
full amplitude because they only receive contributions from diagrams with
a particular cyclic ordering of the external gluons (planar graphs).

Of course to get the full amplitude one has to square the matrix element

∑

{ai}n

1 {εi}n

1

|M({pi}
n
1 , {εi}

n
1 , {ai}

n
1 )|2 = g2n−4

∑

ε

∑

ij

AICIJA
∗
J ,

where the (n− 1)!× (n− 1)! dimensional color matrix can be written in the
most general form as follows:

CIJ =
∑

1...Nc

Tr(ta1t
aσ

I
(2) . . . t

aσ
I
(n))Tr(I ↔ J)∗ . (1)

There exists a much simpler approach, in fact far superior from the point
of view of an automatized numerical calculation, where the matrix element
is represented as follows [7, 8, 19, 20]

M({pi}
n
1 , {εi}

n
1 , {ci, ai}

n
1 ) = 2ign−2

∑

I=P (2,...,n)

DI AI({pi}
n
1 , {εi}

n
1 )

with ci, ai the color and anticolor indices for each external particle, i.e. (c, 0)
for quarks, (0, a) for antiquarks, (c, a) for gluons and (0, 0) for non-colored
particles, and

DI = δc1,aσI (1)
δc2,aσI (2)

. . . δcn,aσI (n)



2342 C.G. Papadopoulos

or in a more abstract notation

DI = δ1,σI (1)δ2,σI (2) . . . δn,σI(n) ,

where σI(1 : n) represent the I-th permutation of the set {1, 2, . . . , n}. The
sequence of numbers i, σI(i), i = 1 . . . n, is identified as a color-connection
configuration, describing the way the color connection is structured. In that
sense, no explicit reference to “real” color indices is made. Finally the color
matrix takes a very simple form

CIJ = Nm(σI ,σJ )
c , (2)

where 1 ≤ m(σI , σJ) ≤ n counts how many common cycles the permutations
σI and σJ have. For a detailed description, see [8].

Recursive equations can be written both for the full amplitude, M, and
for the color ordered, A. In the latter case the DS equations are identical to
the Berends–Giele ones.

For numerical applications the computation of the color ordered am-
plitudes suffers from the n! growth related to the number of color-flow or
color-connection configurations. In such cases it is preferable to write down
DS equations for the full amplitude M({pi}

n
1 , {εi}

n
1 , {ci, ai}

n
1 ) and then per-

form the incoherent sum
∑

ci,ai=1...3

|M({pi}
n
1 , {εi}

n
1 , {ci, ai}

n
1 )|2

by Monte-Carlo methods. We have recently extended HELAC so that a Mon-
te-Carlo over “real” colors, or color-configurations can be performed. A color
configuration is identified by the sequence of numbers {ci, ai}

n
1 , ci, ai =

1 . . . 3. The details are given in [8].
Besides the problem related to the color treatment, the summation over

different flavors is also a very important problem when the flavor of partons
at the final state is unidentified, as usually. In that case a Monte Carlo treat-
ment over flavor degrees of freedom has been proposed some time ago [21],
showing that the purely gluonic contribution falls from 45.7% for 3-jet, to
26.6% for 8-jet production [21].

HELAC/PHEGAS [6,9] is a computer package2, which is an implemen-
tation of the Dyson–Schwinger method and is able to compute helicity am-
plitudes and cross sections (based on multi-channel phase space generator
PHEGAS [9]) for arbitrary scattering process in the Standard Model at the
parton level. The current version includes also a summation over all subpro-
cesses, relevant for processes like pp → A + njets or pp̄ → A + njets, where

2 http://www.cern.ch/helac-phegas
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A represents any exclusive final state besides jets (i.e. light quarks), con-
sisting of arbitrary combination of leptons, gauge bosons or heavy quarks.
The output is written in the latest standard Les Houches Accord format [22]
and an interface to PYTHIA [23] including optionally UPVETO for merging
consistently with the parton shower algorithm, has been developed.

3. Beyond tree-order

Recursive equations can also simplify the calculation of one-loop ampli-
tudes. In a recent paper [24], a reduction technique for arbitrary one-loop
amplitudes at the integrand level by solving numerically the set of kine-
matical equations for the integration momentum has been presented. The
method requires a minimal information about the form of the one-loop am-
plitude and therefore it is well suited for a numerical implementation. The
method applies for any set of internal and/or external masses, so that one
is capable to study the full electroweak model, without being limited to
massless theories.

As is well known the main issue in one-loop calculations is to reduce,
using computer algebra, generic one-loop integrals into a minimal set of
scalar integrals (and remaining pieces, the so called rational terms). This
can be achieved by tensor reduction [25–27]. For multi-particle processes
though this method becomes quite cumbersome. This is due to the large
number of terms generated and the appearance of numerical instabilities due
to the zeros of Gram determinants. On the other hand, several numerical
or semi-numerical methods aim for a direct numerical computation of the
tensor integrals [28]. Although purely numerical methods can in principle
deal with any configuration of masses and also allow for a direct computation
of both non-rational and rational terms, their applicability remains limited
due to the high demand of computational resources and the non-existence
of an efficient automatization.

In a different approach, the one-loop amplitude rather than individual in-
tegrals are evaluated using the unitarity cut method [29], which relies on tree
amplitudes and avoids the computation of Feynman diagrams. In another
development, the four-dimensional unitarity cut method has been used for
the calculation of QCD amplitudes [30], using twistor-based approaches [31].
Moreover, a generalization of the the unitarity cut method in d dimensions,
has been pursued recently [32].

The starting point of the reduction at the integrand level method, that
combines the traditional algebraic approach with unitarity based ideas, is
the general expression for the integrand of a generic m-point one-loop am-
plitude [24]
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A(q̄) =
N(q)

D̄0D̄1 . . . D̄m−1

with
D̄i = (q̄ + pi)

2 − m2
i ,

where a bar is used to denote objects living in n = 4 + ε dimensions,
and q̄2 = q2 + q̃2 3. The numerator N(q) depends on the 4-dimensional
denominators Di = (q + pi)

2 − m2
i and can be written as follows

N(q) =
m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i6=i0,i1,i2,i3

Di

+
m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]
m−1
∏

i6=i0,i1,i2

Di

+
m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i6=i0,i1

Di

+
m−1
∑

i0

[a(i0) + ã(q; i0)]
m−1
∏

i6=i0

Di

+ P̃ (q)
m−1
∏

i

Di .

This is the master equation. After integration over the loop momentum,
the coefficients d, c, b, a will multiply the known one-loop scalar functions,
whereas the terms proportional to d̃, c̃, b̃, ã, the so-called spurious terms, will
give vanishing contributions. Such a separation is always possible, as shown
in Ref. [24], and, with this choice, the former set of coefficients is therefore
immediately interpretable as the ensemble of the coefficients of all possible
4, 3, 2, 1-point one-loop functions contributing to the amplitude.

Once the master equation above is established, the task of computing the
one-loop amplitude is then reduced to the algebraical problem of determining
the coefficients d, c, b, a by evaluating the function N(q) a sufficient number
of times, at different values of q, and then inverting the system. That can
be achieved quite efficiently by singling out particular choices of q such that,
systematically, 4, 3, 2 or 1 among all possible denominators Di vanishes.
Then the system of equations is solved iteratively. First one determine all
possible 4-point functions, then the 3-point functions and so on.

3
q̃
2 is ǫ-dimensional and q̃ · q = 0.
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The method is opening a new direction in one loop computations, offering
the possibility of a purely numerical approach which on the same time is fully
algebraic, in the sense that no integration over loop-related quantities, i.e.

loop momentum or Feynman parameters, is needed. The only ingredient is
the calculation of the one-loop amplitudes (residues) on a set of specific loop
momenta dictated by the zeros of the propagator functions.

4. Outlook

Recursive equations have been proven to be the framework for an efficient
matrix element computation for arbitrary scattering processes. They are
the basic ingredients towards the construction of an automatized generator
including NLO corrections. The fusion with parton-shower generators and
the understanding of the working of this fusion, will be one of the main tasks
in the near future. Precision calculations will offer the solid basis needed for
discoveries in future high-energy colliders.

C.G.P acknowledges support by the EU Transfer of Knowledge pro-
gramme MTKD-CT-2004-014319.
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