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We present a description of a Monte Carlo algorithm that solves the
modified DGLAP-type evolution equation in QCD. The change with re-
spect to normal DGLAP is in the form of the argument of the coupling
constant. We consider primarily the CCFM-like form α(kT), but also a
simpler choice α(Q(1 − z)) is discussed. The evolution is performed in the
rapidity space with strict rapidity ordering and no gaps in phase-space.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

Within last three years a project of constructing a new Monte Carlo (MC)
QCD parton shower has been initiated by our group from IFJ-PAN in Cra-
cow. To date the main emphasis has been put on the comprehensive analysis
of the QCD evolution equations (EVEQs) and their implementations in the
MC algorithms. Let me make here a brief overview of the results achieved
so far. At first, as an introductory exercise, we constructed the standard
forward Markovian algorithms solving the DGLAP-type EVEQs [1], both in
the LO approximation [2] and later on at the NLO level as well [3, 4]. The
important point of these papers was to show that with the modern com-
puters it is feasible to use MC methods to solve EVEQs with high precision
(of the order of 10−3). In parallel to the Markovian algorithms we have
developed a class of genuinely new algorithms, that we call Constrained MC
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(CMC). These algorithms allow for predefining, i.e. constraining, the final
values of the evolution variables, both x and flavor type [5–7]. This way we
have found a solution to the longstanding problem of QCD parton showers,
so far solvable only by means of pretabulation and backward evolution. As
a next step, or rather a whole direction, we turned into modified DGLAP
and non-DGLAP EVEQs [8–10]. Some of these modifications, related to the
argument of the running coupling constant, will be discussed in more detail
in this presentation. In parallel with the analysis of the EVEQs and their
solutions we initiated also other subjects, vital for the construction of the
complete parton shower: the problem of smooth joining of the evolutions in
two hemispheres (see contribution by S. Jadach in these proceedings) and
the question of merging of our CMC parton shower with the NLO exact ma-
trix element (see contribution by P. Stephens in these proceedings). Also,
we made a first attempt [11] towards constructing a framework for fitting F2

function obtained from our MC evolutions to the experimental data, which
is a mandatory procedure to determine the shape of initial PDFs at low
Q2. Finally, in the paper [12] we have presented a general framework of the
hierarchical reorganization of the Markovian process. This simple but very
powerful technique has been frequently used by us in the previous papers
and therefore its solid mathematical foundation was necessary.

After this short “historical” overview let us get back to the main subject
of this presentation, i.e. the modifications of the argument of the coupling
constant in the DGLAP EVEQs. The original DGLAP uses α(Q), where
Q is the evolution variable. However, by means of a clever replacement of
the argument Q by Q(1 − z) one can resum some of the logarithmically
enhanced higher order terms or include some of the low-x effects [13–15].
There is also another important choice of the argument — one can use the
actual transverse momentum k2

T [16,17]. Construction of the Markovian MC
algorithm based on this kT-scheme is the main target of this presentation.
In order to be able to express kT in terms of the evolution variables, one has
to define how the kinematical variables are related to the evolution variables
and what kind of ordering do we want to use in the evolution. Let us briefly
discuss the available options. There are three main types of orderings: in
virtualities, where Q2 ∼ m2 used by PYTHIA [18], in transverse momenta,
Q2 ∼ k2

T, used by ARIADNE [19] and in rapidity, Q ∼ exp η, used by HER-
WIG [20]. Each of these approaches has its pros and cons. For example the
PYTHIA one (virtuality ordering) requires additional treatment to restore
coherence effects whereas the HERWIG one (rapidity ordering) has gaps in
the phase space coverage and requires complicate merging procedure with
the matrix element. In our project we have decided to use the rapidity or-
dering. However, from the very beginning we insist on having the complete
coverage of the phase space and do not allow for any gaps.
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Let us now define the kinematics of our cascade and relate it to the
evolution variables. We define kµ

i to be the momenta of emitted partons,
whereas qµ

i denote the virtual partons along the ladder. The initial hadron
carries q+

h = 2Eh. For each emitted parton we find

k+
i = q+

i−1− q+
i = 2Eh(xi−1−xi) = 2Ehxi−1(1−zi); ηi =

1

2
ln

k+
i

k−
i

. (1)

Consequently, the transverse momentum of emitted massless parton reads

kTi
=

√

k+
i k−

i = k+
i e−ηi = xi−1(1 − zi)2Ehe−ηi . (2)

This suggests the convenient definition of the rapidity-based evolution time
t = log Q as

ti = log Qi = −ηi + ln(2Eh) (3)

and the kTi
becomes:

kTi
= etixi(1 − zi)/zi = etixi−1(1 − zi) = eti(xi−1 − xi) . (4)

Having defined the kinematics we are ready to write down the EVEQ for
the evolution of the parton momentum distribution xD(x, t) in the rapidity
space with α(kT). For the sake of simplicity we will present here the case of
gluon emission only. The EVEQ reads

∂txD(x, t) =

∫

dudz αS(e
tx(1 − z)/z)zP (z)uD(u, t)δ(x − zu)

=

∫

du/u αS(e
t(u − x))xP (x/u)D(u, t) , (5)

where P (z) denotes the standard Altarelli–Parisi kernel. It is composed of
the real emission part P θ(z)θ(1−ε−z) and its virtual partner P δ(ε)δ(1−z).
In standard DGLAP the infrared cut-off ε is just a small number. However,
in the case of kT-dependent α, in order to avoid the Landau pole we have to
impose the finite cut-off λ such that kT > λ. This condition translates into

λ < kT = etx
1 − z

z
⇒ z <

etx

etx + λ
≪ 1 ⇒ u > λe−t + zu . (6)

The new cut-off is not infinitesimal anymore. In order to maintain the
momentum sum rule in the evolution we have to ensure that

1
∫

0

dzP (z) = 0 . (7)
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This can be achieved by introducing the same cut-off into the definition of
the virtual part of the kernel as well. The modified definition reads now

P δ(u, t) = −

1−λe−t/u
∫

0

dz αS(e
tu(1 − z))zP θ(z) . (8)

We will skip the details of the derivation of the master formula which de-
scribes the solution of EVEQ in the form of the Markov process. Instead, we
will only show its most important ingredients. The single emission step is
described by a probability distribution of a step forward in t and z variables.
The inner, z-distribution, reads

dω(zi, ti; i − 1)

dtidzi
=αS(k

T
i )ziP

θ(zi)θ1−λe−ti/xi−1≥zi
e−Φ(ti,ti−1;xi−1)θti≥ti−1

(9)

and probability of step in t is then given by the integral over dzi of the
above dω

dω(ti; i − 1)

dti
= θti≥ti−1

(∂tiΦ(ti, ti−1;xi−1))e
−Φ(ti,ti−1;xi−1) . (10)

The key ingredient of the above distributions, the Sudakov form factor Φ, is
defined in a usual way as

Φ(ti, ti−1;xi−1) = −

ti
∫

ti−1

dt′P δ(xi−1, t
′)

=

ti
∫

ti−1

dt′
1−λe−t

′

/xi−1
∫

0

dzαS(et′xi−1(1 − z))zP (z) . (11)

A few comments are in order here. The two-dimensional integral defining
the form factor Φ is not calculable analytically even in the case of the LO
kernel P . However, it is possible to calculate it for the singular part of the
LO kernel, i.e. P1/(1−z) = 1/(1 − z). In this case we obtain

Φ1/(1−z)(ti, ti−1;u) = (2/β0)[ρ(ti + ln u) − ρ(ti−1 + tu)θti−1+tu>tλ ]

ρ(t) = t̂(ln t̂ − ln t̂λ − 1) + t̂λ; t̂ = t − ln Λ0, tλ = lnλ, tu = ln u . (12)

However, even Φ1/(1−z)(ti) cannot be inverted analytically, (to generate ti).
We have decided to perform this inversion numerically and a fast numerical
routine has been written and used for this purpose. It turns out that gener-
ation of the P1/(1−z) part is enough to construct the MC algorithm, because
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the leftover, finite part of the kernel PF = P −P1/(1−z) is much smaller and
can be re-introduced as a weight later on. The corresponding part ΦF of the
Sudakov form-factor can be expressed as a one-dimensional integral

ΦF(ti, t0;u) =

min(tu,tλ−t0)
∫

tλ−t1

dvF (v) ln
t1 + v

tλ
+ θt0+tu>tλ

tu
∫

tλ−t0

dvF (v) ln
t1 + v

t0 + v
(13)

which then needs to be evaluated numerically on an event-per-event-basis.
We can illustrate the above single emission in the Sudakov plane, shown

in Fig. 1. The plane is defined by a pair of variables (log k+, log k−) or
equivalently (ξ = log η, log kT). The phase space for the first emission, which
occurred at k1, is delimited by the yellow triangle limited from below by the
kT = λ line. The available phase space for the next emission is delimited by
the white trapezoid (from ξ1 to ξ∗). The reduction of the phase space from
above reflects the loss of k+ in the first emission.
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Fig. 1. Sudakov phase space of a single emission ordered in rapidity η = log ξ and

with minimal cut-off λ on kT.

We have also implemented the other argument in α, namely the
α(et(1−z)). From the technical point of view the implementation is simpler,
because now the argument does not depend on x anymore. An interesting
physical difference however, results from the different cut-off related to the
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Landau pole. Namely, in this case the cut-off reads

λ ≤ eti(1 − zi) = kTi
/xi−1 (14)

with an obvious consequence that in this case the kT can drop below λ, down
to

kTi
≥ λxi−1 . (15)

We have illustrated this phenomenon in the Sudakov plane shown in Fig. 2.
The trapezoid of the second emission (delimited by the blue line, between
ξ1 and ξ∗) overhangs now below the kT = λ line.
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Fig. 2. Sudakov phase space of a single emission ordered in rapidity η = log ξ and

with minimal cut-off λ on kTi
/xi−1.

Let us present some numerical results. We have obtained them from
two independent implementations of the α(kT) scheme, in the Markovian
algorithm described here and in the Constrained algorithm of Ref. [21]. In
both cases the same change of argument has been applied also for the quark–
gluon transitions.

In Figs. 3 and 4 we show the case of gluon emissions only (no quark–
gluon transitions), for gluon and quark PDFs, respectively. One can see an
excellent agreement between MMC and CMC results, down to the precision
of 10−3, limited by the statistics.
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Fig. 3. Evolution of the gluon PDF from 1 GeV to 1000 GeV with α(kT), rapidity

ordering and minimal cut-off λ on kT. No quark–gluon transitions.
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Fig. 4. Evolution of the quark PDF from 1 GeV to 1000 GeV with α(kT), rapidity

ordering and minimal cut-off λ on kT. No quark–gluon transitions.
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In Figs. 5 and 6 we present the full evolution with the quark–gluon
transitions for gluon and quark PDFs. The lines in the top frame correspond
respectively (from upper to lower) to total distribution, and its components
with 0,1,2,3 and 4 transitions. One can see that four transitions contribute
well below the required 10−3 precision level and can be safely neglected. In
the bottom frames the comparison of MMC and CMC results is shown for
all components. As before, the agreement at the level of 10−3 is achieved.
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Fig. 5. Evolution of the gluon PDF from 1 GeV to 1000 GeV with α(kT), rapidity

ordering, minimal cut-off λ on kT and quark–gluon transitions. Curves in the top

frames correspond respectively (from upper to lower) to total distribution, and its

components with 0,1,2,3 and 4 transitions.

To summarize, in this presentation we gave a brief report on one of our
recent activities within the developed project of constructing a new QCD
parton shower MC program. We showed how we implemented the modified
running coupling constants in the DGLAP-type Markovian evolution algo-
rithm. We presented the cases of α(kT) as well as the simpler α(Q(1−z)) one.
Numerical comparisons between two implementations (MMC and CMC)
confirmed the precision of implementations at the level of 10−3, both for
the pure gluonstrahlung as well as for the full evolution with quark–gluon
transitions.
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Fig. 6. Evolution of the quark PDF from 1 GeV to 1000 GeV with α(kT), rapidity

ordering, minimal cut-off λ on kT and quark–gluon transitions. Curves in the top

frame correspond respectively (from upper to lower) to total distribution, and its

components with 0,1,2,3 and 4 transitions.
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