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We present a new method of matching the Constrained Monte Carlo
(CMC) algorithm to next-to-leading order matrix elements. In such match-
ing, one must simultaneously treat the infra-red singularities of the matrix
element and double counting issues between the two contributions. In the
proposed method these two issues are dealt with by a specially defined
counterterm. This counterterm is analyzed in detail and the connection of
the CMC algorithm and formal factorization theorems is given. This coun-
terterm also allows many new processes to be quickly integrated into the
algorithm as the application of the counterterm can be done at the matrix
element generation level and all residual issues in the parton shower are
universal.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction

The most predictive tool we have at our disposal for analyzing high en-
ergy hadron–hadron data is perturbative Quantum Chromodynamics
(pQCD). With this we can compute order-by-order in powers of the coupling
constant, αS, the contributions to a given process. The drawback with this
order-by-order approach is that this becomes computationally prohibitive
beyond next-to-next-to-leading order (NNLO), and for many processes even
beyond next-to-leading order (NLO). This order, and higher, is necessary,
however, to connect the many particle final state events from experiments
with the underlying theory. Fortunately, the theoretical framework to in-
corporate the most relevant aspects of the higher-order contributions has
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been developed and is well known [1–4]. The result is an evolution equa-
tion, for example the DGLAP equation [1], which resumes these leading
contributions.

In general, however, this framework to include the higher-order effects
is only strictly valid in the inclusive sense, where all extra particles have
been integrated out. The experiments are capable of studying the exclusive

properties of the particles as well and a connection of these exclusive states
to the theory is necessary. This is achieved by means of a parton shower

[5,6]. This method solves the evolution equation by means of a Monte Carlo
algorithm, where each sample of the Monte Carlo can be related to the fully
exclusive four momenta of the particles. To date, this relationship between
the evolution equation and the exclusive states has only been possible to the
leading logarithmic (LL) approximation.

In order to obtain the most precise prediction of the theory we want to
combine the LL parton shower with the NLO perturbative calculation. This
matching is non-trivial due to the singularity structure of the NLO result
and the double counting issues between the two contributions. The dou-
ble counting is related directly to the specific implementation of the parton
shower. In this paper we report the current status of matching a NLO calcu-
lation with the LL parton shower generated according to the new constrained
Monte Carlo (CMC) algorithm [7–10].

The paper is structured as follows: In Section 2 we define the CMC algo-
rithm and particular features which are relevant for the proposed matching
scheme. In Section 3 we propose an algorithm which provides the full NLO
result. In Section 4 we present a new counterterm to use in the NLO cal-
culation to remove the singularities. This new counterterm is particularly
attractive for use in our matching prescription. In Section 5 we study the
relation to the standard factorization schemes and suggest the proper treat-
ment. Last we conclude these results and present our future plans.

2. Constrained Monte Carlo algorithm

The Monte Carlo method is used to solve an evolution equation of the
form

Q2 ∂D(x,Q2)

∂Q2
=

∫

x

dzP (z,Q2)D(x/z,Q2) , (1)

in order to resume the large logarithms in the soft and collinear regions. The
upper bound of the integral is not specified as this corresponds to different
treatments of the “unresolvable” emissions. P (z) is the kernel of the evolu-
tion and D(x,Q2) is the distribution of the longitudinal momentum fraction
x at scale Q2. For simplicity we have dropped the explicit flavor indices.



Matching Constrained Monte Carlo to NLO Matrix Element 2381

We denote the solution of the constrained evolution [7–10] as

D(x, q) = G(x, q;x0, q0)D0(x0, q0) , (2)

where D0(x0, q0) is the non-perturbative structure of the proton and q is
some evolution time. In this representation it is implicit that the full four
momentum of the emissions are contained in G. The form of G which satisfies
the evolution equation is given as

G
(

x, q2;x0, q
2
0

)

=

∞
∑

n=0

∆
(

q2, q2
n

)







n
∏

i=1

q2

∫

q2

i−1

dq2
i

q2
i

∫

dzi∆
(

q2
i , q

2
i−1

)

P
(

zi, q
2
i

)







× δ
(

x − x0

∑

j

zj

)

, (3)

with ∆(Q2, q2) the Sudakov form factor

∆
(

q2, q2
0

)

= exp
(

−

q2

∫

q2

0

dq′2

q′2

∫

dz′P (z′, q′2)
)

, (4)

defined such that
∫

dxxD(x,Q2) = 1. Again the upper bound on the z
integration has been omitted as several choices are possible and each cor-
responds to a slightly different evolution. Details can be found in [11]. In
Eq. (3) the constraint can be seen explicitly by the δ function.

The evolution operator G satisfies the relation

G(x, q2;x0, q
2
0) =

∫

dx′G(x, q2;x′, q′2)G(x′, q′2;x0, q
2
0) . (5)

Thus

D(x, q2) =

∫

dx′G(x, q2;x′, q′2)D(x′, q′2) . (6)

There are many choices of the ordering variable q which satisfies the
evolution equation given in Eq. (1). If we write the momentum of an emitted
gluon as

ki = yip + ȳip̄ + k⊥i , (7)

with p and p̄ the momentum of the hadrons, we define the evolution variable
and momentum fraction to be

qi =

√

S
ȳi

yi
, zi = 1 −

yi

xi−1
, (8)

q̄i =

√

S
yi

ȳi

, z̄i = 1 −
ȳi

x̄i−1
, (9)
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in the forward hemisphere and backward hemispheres respectively; addition-
ally S = (p + p̄)2. These evolution variables are related to the rapidity in
the lab frame. It is important to note that this solution to the evolution
equation has full coverage of phase space (modulus the “unresolved” soft
emissions).

In the constrained evolution the final x value can be given and the evo-
lution proceeds such that the constraint is matched. This means that the
evolution can proceed forward from the non-perturbative proton structure to
the perturbative scale of the hard process, while retaining important features
of the hard process, e.g. resonances.

This is quite different from the standard backward evolution algorithm [6]
where the evolution is guided by a tabulated collinear pdf. In this case the
hard process sets the initial conditions and the evolution proceeds backwards
toward the proton. In order to conserve momentum of the event it is nec-
essary to boost the incoming quark lines independently and preserve a set
of invariants of the hard process. This procedure, however, destroys other
invariants. For example, one may choose to preserve the rapidity and mass
of the s-channel, but by doing so the t-channel is changed.

Thus far we have only discussed the evolution of one proton. For LHC
predictions we of course must consider two proton evolutions simultaneously.
The two hemispheres can be divided in many different ways. As the evolu-
tions are ordered in rapidity, the most obvious choice is to divide the two
hemispheres by some constant rapidity, η∗. By construction the phase space
for each evolution is filled completely and the choice of the rapidity separa-
tion is free. In the CMC implementation KrCMC [12] the choice is made to
fix the rapidity at the rapidity of the s-channel. This gives

η∗ =
1

2
log

x

x̄
. (10)

It has been shown [12] how to match the two hemispheres according to
a division by a fixed rapidity and how to constrain the evolution such that
s is conserved and is given by the true momentum, not just the rescaled
hadronic center of mass energy. Using this we now have the hadronic cross
section at leading order, plus resummation

dσHH =

∫

dxdx̄

∫

dx0dx̄0 G(x, q2;x0, q
2
0)D0(x0, q

2
0)

×G(x̄, q̄2; x̄0, q̄
2
0 , )D0(x̄0, q̄

2
0)dσB(s)δs , (11)

where δs contains condition that the sum of all momentum must result in the
partonic center-of-mass energy of the hard process equal to s. This formula
is illustrated in Fig. 1.
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dσB

dσNLO

G(x, µ
F ;x

0 , µ
0 ) G(x̄

, µ̄
F
; x̄ 0

, µ̄
0
)

D0(x̄0, µ̄0)D0(x0, µ0)

Fig. 1. The solid blobs represent the non-perturbative proton structure. Each of

the smaller blobs represents a kernel in the evolution operator, G. The central blob

is the Born level hard process and the two overlapping circles contain the factors

which must be considered at next-to-leading order.

3. Matching NLO matrix element

We now turn our attention to improving Eq. (11) to give the full next-
to-leading order (NLO) prediction. As the evolution operators provide a full
coverage of phase space we can re-weight configurations produced in the
evolution to give the correct NLO distribution. In this way we wish to com-
pute a function, β(k), such that the gluon with momentum k is distributed
according to the NLO distribution. In the standard factorization theorem
we have the NLO prediction

dσNLO
HH =

∫

dxdx̄f(x, µ2
F)f(x̄, µ2

F)dσ̂(xx̄S;µ2
F) , (12)

where f(x,Q2) is the standard collinear pdf which is the solution to the
DGLAP [1] evolution equation. The hat on the partonic cross section implies
that the IR divergences have been treated according to the KLN [13] and
factorization theorems. If we treat our Monte Carlo solution D(x, q2) in the
same way we must find a function β such that

dσNLO
HH =

∫

dx0dx̄0 G(x, q2;x0, q
2
0)D0(x0, q

2
0)

×G(x̄, q̄2; x̄0, q̄
2
0)D0(x̄0, q̄

2
0) dσB(s)β(s, k)δs, (13)

is able to reproduce Eq. (12) with f(x,Q2) interchanged with D(x, q2). We
write the β function as

β(s, k) = β0(s) + βcol
0 (s) + βcol

1 (s) + β1(s, k) , (14)
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where β0 and βcol
0 re-weight the Born level kinematics and β1 and βcol

1 re-
weight the kinematics with an extra emission. We start by defining a value
of the evolution variable at which to cut the evolution operator. We denote
this as ξ. Remember as well that each hemisphere is separated by some
fixed rapidity, η∗, which translates into a maximum value of the evolution
operator, q∗ and q̄∗. This gives

dσNLO
HH =

∫

dxdx̄

[
∫

dx′
G(x, q∗;x′, ξ)D(x′, ξ)D(x̄, q̄∗)θ(q∗ − ξ) (15)

+

∫

dx̄′D(x, q∗)G(x̄, q̄∗; x̄′, ξ)D(x̄′, ξ)θ(q̄∗ − ξ)

]

dσB(s)β(k(ξ)) .

We now extract the O(αS) contribution from the two evolution operators.
We find the virtual and real contributions at O(αS) (modulus a negative
sign in the virtual contribution) are given as

ρV
PS =

∫ q2

ξ2

dq′2

q′2

∫

dz′
αS(q

′, z′)K(z′)

(1 − z′)
dσB (16)

ρR
PS =

αS(q, z)K(z)

q2(1 − z)
dzdq2dσB , (17)

with x′ = zx and similarly for the backward hemisphere. Here we have
defined

P (z, q) =
αS(z, q)K(z)

(1 − z)
. (18)

Thus when we expand Eq. (13) to O(αS) we find

dσNLO
HH =

∫

dxdx̄

[
∫

dx′D(x′, ξ)D(x̄, q̄)
(

1 − ρV
PS + ρR

PS(k)
)

θ(ηk − η∗)

+

∫

dx̄′D(x, q)D(x̄′, ξ)
(

1 − ρ̄V
PS + ρ̄R

PS(k)
)

θ(η∗ − ηk)

]

×

[(

β
(0)
0 + αSβ

(1)
0

)

δ(4)(k) + αSβ
(0)
1

]

dσB(s) . (19)

Comparing this to Eq. (12) we find

β
(0)
0 = 1 , (20)

β
(1)
0 =

dσV + ρV
PS + ρ̄V

PS

dσB
, (21)

β
(0)
1 =

dσR − ρR
PS − ρ̄R

PS

dσB
. (22)
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We must be careful with the collinear singularities. In the standard factor-
ization theorem, the differential cross section has the collinear singularities
removed by absorbing them into the non-perturbative part of the pdf. We
will do the same thing and the details will be presented in Section 5.

We see that ξ acts in the same manner as the factorization scale, µF,
in Eq. (12). For a given event, the logical choice for ξ is the value of qi for
a given emission. It is argued [14] that the optimal choice for the subleading
terms is the emission with highest p⊥. For reasons of ordering, the emission
chosen must also be the last emission in the ladder. In KrCMC we do not
order in p⊥ but rather in rapidity, thus the last emission and the hardest
emission are not equivalent; they correspond in about 60% of the events. If
one wanted to strictly adhere to the hardest emission then the events where
this is violated can be thrown away and the efficiency loss is not too large.
As our goal is exact NLO matching, we instead choose the hardest emission
between the last one of each ladder. This is illustrated in Fig. 1.

4. Treatment of NLO matrix element

We have defined the Monte Carlo weight which we can associate to
a given emission to re-weight that emission to NLO. We see from Eqs. (21),
(22) that the real and virtual contributions are separated. This means that
the IR singularities must be treated using some counterterm. In this section
we propose such a counterterm and in the next section we will study this
term and show why it is an ideal choice to use in Eqs. (21), (22).

Inspecting Eq. (21) we find that if we choose a counterterm that matches
ρV

PS away from the singularities, then our definition of β will be greatly
simplified. We define this counterterm in D = 4 − 2ǫ dimensions and use
the same hemisphere separation given by the Monte Carlo. Thus we use the
D dimensional kernel and extend our range of q and z to all values, in order
to contain the singularities. It turns out that when the regulators for the
Monte Carlo are removed, it is more convenient to use the y and ȳ variables
than the q and z ones. In the counterterm, rather than using the hadron
momenta we rescale these by

√

τ/S, with τ a free parameter. This will
be chosen to exactly match the singularities of the NLO calculation. The
separation of hemispheres is given by

η∗ =
1

2
ln

y

ȳ
,

θ(ξ − q∗) = θ
(

y − ȳe2η∗

)

,

θ(q̄∗ − ξ) = θ
(

ȳ − ye−2η∗

)

.
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The form of the counterterm is

dσ
(F)
V,ct =

1
∫

0

dy

ye−2η∗

∫

0

dȳαSµ
2ǫ
R

τ−ǫ(4π)ǫ

Γ (1 − ǫ)
K(y, ǫ)(yȳ)−1−ǫdσB, (23)

for the forward hemisphere and (y ↔ ȳ, η∗ → −η∗) in the backward hemi-
sphere.

If we consider the Altarelli–Parisi [1] splitting function for q → qg we
have

K(y, ǫ) =
CF

2π

(

1 + (1 − y)2 − ǫy2
)

, (24)

which gives

dσ
(F)
V,ct =

(

2

ǫ2
+

3 + 4η∗

ǫ
+4η∗2+6η∗+8

)

αS µ2ǫ
R

(4π)ǫ

(4π)2
τ−ǫCFdσB

Γ (1 − ǫ)
(25)

and (η∗ → −η∗) for the backward hemisphere. Together these two compo-
nents give

dσV,ct = 4παSµ2ǫ
R τ−ǫCFN(ǫ)H(ǫ)dσB

(

4

ǫ2
+

6

ǫ
+ 8η∗2 + 16

)

, (26)

N(ǫ) =
(4π)ǫ

(4π)2
Γ (1 + ǫ), (27)

H(ǫ) =

(

1 −
π2

6
ǫ2 + O(ǫ4)

)

. (28)

The term proportional to η∗2 can be traced back to the effect of the hemi-
sphere separation in the Sudakov factors. This is compensated for by the
real emissions. As this is an unphysical object it should have no effect on
physical predictions. This has been shown [12] for the distribution of the
gluon momentum with no hard matrix element (e.g. dσB = 1).

We define that the virtual counterterm is just minus the integral of the
real counterterm. Thus we have

dσR,ct =−
αS µ2ǫ

R (4π)ǫ

Γ (1− ǫ)
(yȳ)−1−ǫ (K(y, ǫ)θ(ξ−q∗)+K(ȳ, ǫ)θ(q̄∗−ξ))

dy dȳ dφ

2π
.

(29)
With such a definition we know that if the singularities are canceled in the
virtual term, they must also be canceled in the real contributions.

With these definitions of the counterterms we define the regularized cross
sections as

dσ̂V = dσV + dσV,ct , (30)

dσ̂R = dσR + dσR,ct . (31)
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η∗

ln ȳ ln y

η∗2

ln x

ln x̄

Fig. 2. The shaded region is the region of phase space absent for the corresponding

choice of η∗, used to divide the hemispheres.

Having regularized our NLO contributions we turn our attention to the
structure of these counterterms and why they are ideally suited for the con-
strained Monte Carlo.

5. Connection to scheme dependence

The implementation of the evolution equation in KrCMC provides an unin-
tegrated pdf. This differs from the standard collinear pdf as the momentum
in the transverse plane are unintegrated. This means that we depart slightly
from the strict theoretical backing of the collinear factorization. If we are
to include the condition that the transverse momentum entering the hard
process are exactly zero, we would recover exactly the standard factorization
theorem. We have proposed [12] a factorization formula (given in Eq. (11))
which reduces to the standard factorization theorem when we “downgrade”
our Monte Carlo to be that of the standard collinear factorization with pdfs
evolved according to the leading-log DGLAP evolution equation.

Due to the connection to the standard pdf, we feel we are on solid ground
to be able to define a factorization scheme by which we can treat the collinear
singularities of the hard matrix element. This will, in the end, be equivalent
to the collinear factorization schemes and will only apply in the strictly
collinear region.

We start by looking at the virtual counterterm. This choice is for no-
tational simplicity as the bounds of the integrals are explicit. The same
treatment applies to the real counterterm and both will be used to define
the procedure.
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The virtual counterterm can be written in the q, z space of the evolution
for each hemisphere separately. As we have seen the treatment of the hemi-
sphere separation appears in the maximum evolution time. For the forward
hemisphere we find

dσF
V,ct =

q∗2
∫

0

dq′2

(q′2)1+ǫ

1
∫

0

dz′αSµ2ǫ
R

τ−ǫ(4π)ǫ

Γ (1 − ǫ)

K(z′, ǫ)

[(1 − z′)x]1+2ǫ
dσB . (32)

We can divide this integral into three separate regions, as illustrated in
Fig. 3. These are

ρV
C =

q2
n

∫

0

dq′2

(q′2)1+ǫ

1
∫

0

dz′αSµ
2ǫ
R

τ−ǫ(4π)ǫ

Γ (1 − ǫ)

K(z′, ǫ)

[(1 − z′)x]1+2ǫ
dσB , (33)

ρV
PS =

q∗2
∫

q2
n

dq′2

(q′2)1+ǫ

1−εz
∫

0

dz′αSµ
2ǫ
R

τ−ǫ(4π)ǫ

Γ (1 − ǫ)

K(z′, ǫ)

[(1 − z′)x]1+2ǫ
dσB , (34)

ρV
S =

q∗2
∫

q2
n

dq′2

(q′2)1+ǫ

1
∫

1−εz

dz′αSµ
2ǫ
R

τ−ǫ(4π)ǫ

Γ (1 − ǫ)

K(z′, ǫ)

[(1 − z′)x]1+2ǫ
dσB . (35)

As indicated by the notation, the second term is exactly that which is given
in the parton shower. In this case there are no singularities and we can take
ǫ → 0. We have now used εz to represent the cutoff in the parton shower that
defines the “resolvability” of an emission. One may consider several different
choices for this cutoff [11] but we treat it here as an abstract quantity. We
will see that the exact meaning of this does not change the matching method
presented.

We look first at Eq. (35). As can be seen in Fig. 3 this corresponds
to the soft region. This is the region of phase space which is considered
“unresolved” in the parton shower. As this is the soft region we can safely
ignore this and it should not affect any IR safe observables.

The quantity of real interest is ρC . We make use of the “plus” prescription
in the z variables and define the q prescription in the q integration

1
∫

0

dz
f(z)

(1 − z)+
=

1
∫

0

dz
f(z) − f(1)

1 − z
, (36)

q2

∫

0

dq′2
f(q′2)

(q′2)q
=

q2

∫

0

dq′2
f(q′2) − f(0)

q′2
. (37)
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qn

ρC

ρPS

ρs

η∗

k⊥ = λ

ln yln ȳ

Fig. 3. Plot in the Sudakov plane. The decomposition of the counterterm is given

by the sum of the three shaded areas. Each area is labeled according to the text.

The line of minimum k⊥ = λ is an example of a choice of ǫz.

Using these prescriptions we find

ρV
C =

q∗2
∫

0

dq′2
1

∫

0

dz

[

δ(q′2)δ(1 − z)

2ǫ2
−

δ(q′2)

ǫ

1

(1 − z)+
−

δ(1 − z)

2ǫ

1

(q′2)q

+
1

(1 − z)+

1

(q′2)q
−

δ(1 − z)

2

(

log q′2

q′2

)

q

− δq′2
(

log(1 − z)

1 − z

)

+

]

×αS µ2ǫ
R

τ−ǫ(4π)ǫ

Γ (1 − ǫ)
K(z′, ǫ) dσB . (38)

To first order in αS we can treat the scale of the running coupling constant
with respect to q and thus the q prescription yields 0. The result is

ρV
C =

q∗2
∫

0

dq′2
1

∫

0

dz

[

δ(q′2)δ(1 − z)

2ǫ2
−

δ(q′2)

ǫ

1

(1 − z)+
−δ(q′2)

(

log(1−z)

1 − z

)

+

]

×αS µ2ǫ
R

τ−ǫ(4π)ǫ

Γ (1 − ǫ)
K(z, ǫ) dσB . (39)

By definition ρR
C is minus the integrand of ρV

C and after expanding in ǫ we
find:
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ρR
C + ρV

C

dσB
=

(

1

ǫ
+ ln 4π − γE + log

τ

µ2
R

)

P(z) +
αSCF

2π

(

δ(1 − z)

2
− 1 + z

)

+αS

(

log(1 − z)

(1 − z)+
K(z) +

7

4

CF

2π
δ(1 − z)

)

, (40)

P(z) =
αSCF

2π

(

K(z)

(1 − z)+
+

3

2
δ(1 − z)

)

. (41)

The reader will recognize the standard MS terms used to renormalize the
bare parton distribution. We denote these by κMS. Thus

ρR
C +ρV

C

dσB
= κMS(z) + αS

(

log τ/µ2
R

(1 − z)+
+

log(1 − z)

(1 − z)+

)

K(z) (42)

+
αSCF

2π

(

δ(1 − z)

2
− 1 + z

)

+
αSCFδ(1 − z)

2π

(

3

2
log

τ

µ2
R

+
7

4

)

.

We can see the coefficients of O(ǫ) in the splitting function lead a finite effect
in the collinear region. As this term is universal we propose to renormalize
the bare parton density with

κCPS =

(

1

ǫ
+ ln 4π − γE

)

P(z, ǫ) , (43)

P(z, ǫ) =
αSCF

2π

[

K(z, ǫ)

(1 − z)+
+

(

3

2
+

ǫ

2

)

δ(1 − z)

]

, (44)

were the acronym CPS is for “constrained parton shower”. Thus

ρR
C + ρV

C

dσB
= κCPS(z) + αS

(

log τ/µ2
R

(1 − z)+
+

log(1 − z)

(1 − z)+

)

K(z)

+
αSCFδ(1 − z)

2π

(

3

2
log

τ

µ2
R

+
7

4

)

. (45)

It should also be obvious that if the free parameter µ2
R is chosen as τ(1− z)

for both the real and virtual counterterm then

ρR
C + ρV

C = κCPS dσB . (46)

We now turn out attention back to Eqs. (21), (22). Our regularized
terms can be expressed as

dσ̂V = dσV + ρV
C + ρV

PS + ρV
S + ρ̄V

C + ρ̄V
PS + ρ̄V

S , (47)

dσ̂R = dσR +
(

−ρR
PS + ρR

C + ρR
S

)

θF +
(

−ρ̄R
PS + ρ̄R

C + ρ̄R
S

)

θB . (48)
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We can now see why this counterterm is ideal for the CMC as

β
(1)
0 =

dσ̂V

dσB
−

ρV
C + ρV

S + ρ̄V
C + ρ̄V

S

dσB
, (49)

and

β
(0)
1 =

dσ̂R

dσB
−

(ρR
C + ρR

S )θF + (ρ̄R
C + ρ̄R

S )θB

dσB
. (50)

We have already stated that the soft pieces can be safely neglected as they
will not effect the IR safe observables. Formally, this means we have inte-
grated the soft phase space at NLO.

As per the factorization theorem we can absorb the singularity and some
finite pieces in the parton distribution function. After this operation, the
last term in Eq. (49) (for each hemisphere) is defined as βcol

0 and the last
term of Eq. (50) (again for each hemisphere) is βcol

1 and depends only on one
variable, z(z̄). This corresponds to the contributions to the NLO calculation
from emissions in the purely collinear region. This term is universal and
factorization scheme specific. We also see that with a judicious choice of the
renormalization scale and the factorization scheme we can set these terms
to 0.

Readers familiar with MC@NLO [15] will recognize these finite collinear
contributions to be that of the 2̃ configuration. In that work these terms
are treated like the Born level kinematics after a longitudinal boost to com-
pensate for the z value. For both MC@NLO and the matching scheme
prescribed here, these are collinear emissions that effect the kinematics but
are not included in the parton shower contributions.

To summarize the results of this section we present the formula for the β
function in the two different factorization schemes discussed. In the results
below we use a renormalization scale of τ(1 − z). This argument is propor-
tional to the transverse momentum of the emitted gluon. In either scheme
we have

β
(1)
0 =

dσ̂V

dσB
, (51)

β
(0)
1 =

dσ̂R

dσB
. (52)

In the MS scheme we find

β col
0 =

αSCF

4π
δ(1 − z) , (53)

β col
1 = −

αSCF

2π
(1 − z)

dσB(zs)

dσB(s)
, (54)

while in the CPS scheme these collinear terms are zero.
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6. Conclusion

We have presented here a proposal of how to match a NLO matrix el-
ement with the parton shower implementation known as KrCMC [12]. This
method uses a specially designed counterterm to simultaneously avoid dou-
ble counting with the parton shower and to treat the singularities of the NLO
result. This counterterm has been analyzed in detail and its relation to stan-
dard factorization schemes has been discussed. The choice of factorization
scheme and renormalization scale can lead to a non-zero, finite remainder in
the collinear region which is compensated for by an appropriate weight.

In the future this method will be applied to the process pp → W+W− at
NLO. This process is chosen as it contains a rich structure to test all aspects
of the matching. In particular this process has NLO contributions from
qq̄ → W+W−, gq → W+W− and gq̄ → W+W− as well as a richer virtual
structure due to box diagrams. For hadron-hadron to colorless objects, this
process presents many technical hurdles which serve as a cross check of the
method.
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