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We present the theory of QED⊗QCD resummation and its interplay
with shower/matrix element matching in precision LHC physics scenar-
ios. We illustrate the theory using single heavy gauge boson production at
hadron colliders.

PACS numbers: 12.38.Cy, 12.15.Lk, 11.25.Db

1. Introduction

In the imminent LHC environment, where one expects to have an exper-
imental luminosity precision tag at the level of 2%, [1] the requirement for
the theoretical precision tag on the corresponding luminosity processes, such
as single W,Z production with the subsequent decay into light lepton pairs,
should be at the 0.67% level in order not to compromise, unnecessarily, the
over-all precision of the respective LHC luminosity determinations. This
dictates that multiple gluon and photon radiative effects must be controlled
at the stated precision. The theory of QED⊗QCD exponentiation [2] allows
for the simultaneous resummation of multiple gluon and multiple photon
radiative effects in LHC physics processes, to be realized ultimately by MC
methods on an event-by-event basis in the presence of parton showers, in
a framework which allows us to systematically improve the accuracy of the
calculations without double-counting of effects, in principle to all orders in
both αs and α. Such a theoretical framework opens the way to the desired
theoretical precision tag on the LHC luminosity processes.

Our starting point for the new QED⊗QCD resummation theory [2] is
the QCD resummation theory presented in Ref. [3]. This resummation is
an exact rearrangement of the QCD perturbative series based on the N = 1
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term in the exponent in the formal proof of exponentiation in non-Abelian
gauge theories in the eikonal approximation, as given in Ref. [4]. This ex-
ponential is augmented with a sum of residuals which take into account the
remaining contributions to the perturbative series exactly to all orders in
αs

1. We therefore have an exact result whereas the resummation theory in
Ref. [4] and those in Refs. [5–7] are approximate. Recently, an alternative
resummation theory, the soft-collinear effective theory(SCET) [8], has been
developed to treat double resummation of soft and collinear effects. Since
we have an exact re-arrangement of the perturbative series, we could in-
troduce the results from Refs. [5–8] into our representation as well. Such
introductions will appear elsewhere.

The need for the extension of the QCD resummation theory to QED⊗
QCD resummation was already suggested by the results in Refs. [9–14],
where it was shown that in the evolution of the structure functions the
inclusion of the QED contributions leads to effects at the level of ∼ 0.3%,
already almost half of the error budget discussed above. We will find similar
size effects from the threshold region of heavy gauge boson production. All
of these must be taken into account if one wants ∼ 1.0% for the theoretical
precision tag.

The discussion is organized as follows. In Section 2, we review the exten-
sion of the YFS theory to an exact resummation theory for QCD. Section 3
presents the further extension to QED⊗QCD. Section 4 contains the appli-
cation to heavy gauge boson production with the attendant discussion of
shower/ME matching. Section 5 contains some concluding remarks.

2. Extension of YFS theory to QCD

We consider a parton-level single heavy boson production process such
as q + q̄′ → V + n(g) + X → ℓ̄ℓ′ + n(g) + X, where V = W±, Z, and ℓ =
e, µ, ℓ′ = νe, νµ(e, µ) respectively for V = W+(Z), and ℓ = νe, νµ, ℓ′ = e, µ
respectively for V = W−. It has been established [3] that the cross section
may be expressed as

dσ̂exp =
∑

n

dσ̂n = eSUMIR(QCD)
∑

∞

n=0

∫ ∏n
j=1

d3kj

kj

∫
d4y

(2π)4
eiy·(p1+p2−q1−q2−

P

kj)+DQCD

×˜̄βn(k1, . . . , kn)d3p2

p 0
2

d3q2

q 0
2

, (1)

1 If desired, our overall exponential factor can be made to include all of the terms in
the exponent in Ref. [4], in principle.
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where gluon residuals ˜̄βn(k1, . . . , kn), defined by Ref. [3], are free of all in-
frared divergences to all orders in αs(Q). The functions SUMIR(QCD) and

DQCD, together with the basic infrared functions Bnls
QCD, B̃nls

QCD, and S̃nls
QCD

are specified in Ref. [3]. We call attention to the essential compensation
between the left over genuine non-Abelian IR virtual and real singularities
between the phase space integrals

∫
dPh β̄n and

∫
dPh β̄n+1 that really

allows us to isolate ˜̄βj and distinguishes QCD from QED, where no such
compensation occurs. The result in (1) has been realized by Monte Carlo
methods [3]. See also Refs. [15–17] for exact O(α2

s ) and Refs. [18–20] for
exact O(α) results on the heavy gauge boson production processes which we
discuss here.

Apparently, we can not emphasize too much the exactness of (1). Some
confusion seems to exist because it does not show explicitly an ordered ex-
ponential operator for an appropriate ordering prescription, path-ordered,
time-ordered, etc. The essential point is that, in (1), we have evaluated
the matrix elements of these operators and written the result in terms of

the over-all exponent shown therein and the residuals ˜̄βj . This allows us to
maintain exactness to all orders in αs.

3. QED⊗QCD resummation theory

The new QED⊗QCD theory is obtained by simultaneously exponentiat-
ing the large IR terms in QCD and the exact IR divergent terms in QED,
so that we arrive at the new result

dσ̂exp = eSUMIR(QCED)
∑

∞

n,m=0

∫ ∏n
j1=1

d3kj1

kj1

∏m
j2=1

d3k′
j2

k′
j2∫

d4y
(2π)4 eiy·(p1+q1−p2−q2−

P

kj1
−

P

k′
j2

)+DQCED

×˜̄βn,m(k1, . . . , kn; k′
1, . . . , k

′
m)d3p2

p 0
2

d3q2

q 0
2

, (2)

where the new YFS [21, 22] residuals, ˜̄βn,m (k1, . . . , kn; k′
1, . . . , k

′
m), with n

hard gluons and m hard photons, defined in Ref. [2], represent the successive
application of the YFS expansion first for QCD and subsequently for QED.

The functions SUMIR(QCED), DQCED are determined from their QCD
analogs SUMIR(QCD),DQCD via the substitutions

Bnls
QCD → Bnls

QCD + Bnls
QED ≡ Bnls

QCED ,

B̃nls
QCD → B̃nls

QCD + B̃nls
QED ≡ B̃nls

QCED ,

S̃nls
QCD → S̃nls

QCD + S̃nls
QED ≡ S̃nls

QCED , (3)
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everywhere in expressions for the latter functions given in Ref. [3]. We stress
that if desired the exponent corresponding the N th Gatherall exponent for
N > 1 can be systematically included in the QCD exponents SUMIR(QCD),
DQCD if desired, with a corresponding change in the respective residuals
˜̄βn,m(k1, . . . , kn; k′

1, . . . , k
′
m). The residuals ˜̄βn,m(k1, . . . , kn; k′

1, . . . , k
′
m) are

free of all infrared singularities, and the result in (2) is a representation that
is exact and that can therefore be used to make contact with parton shower
MC’s without double counting or the unnecessary averaging of effects such as
the gluon azimuthal angular distribution relative to its parent’s momentum
direction.

In the respective infrared algebra (QCED) in (2), the average Bjorken x
values

xavg(QED) ∼= γ(QED)/(1 + γ(QED)) ,

xavg(QCD) ∼= γ(QCD)/(1 + γ(QCD)) ,

where γ(A) = 2αACA

π
(Ls − 1), A = QED, QCD, with CA = Q2

f , CF , respec-
tively, for A = QED, QCD and the big log Ls, imply that QCD dominant
corrections happen an order of magnitude earlier than those for QED. This

means that the leading ˜̄β0,0-level gives already a good estimate of the size
of the interplay between the higher order QED and QCD effects which we
will use to illustrate (2) here.

4. QED⊗ QCD threshold corrections
and shower/ME matching at the LHC

The cross section for the processes pp → V + n(γ) + m(g) + X → ℓ̄ℓ′ +
n′(γ) + m(g) + X, where V, ℓ, ℓ′ are the vector–boson/lepton combinations
defined in Section 3, may be constructed from the parton-level cross section
via the usual formula (we use the standard notation here [2])

dσexp =
∑

i,j

∫
dxidxjFi(xi)Fj(xj)dσ̂exp(xixjs) . (4)

In this section, we will use the result in (2) here with semi-analytical methods
and structure functions from Ref. [23] to examine the size of QED⊗QCD
threshold corrections. A Monte Carlo realization will appear elsewhere [24].

First, we wish to make contact with the existing literature and stan-
dard practice for QCD parton showers as realized by HERWIG [25] and/or
PYTHIA [26]. Eventually, we will also make contact with the new parton
distribution function evolution MC algorithm in Ref. [27]. We intend to
combine our exact YFS-style resummation calculus with HERWIG and/or
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PYTHIA by using the latter to generate a parton shower starting from the
initial (x1, x2) point at factorization scale µ, after this point is provided by
the {Fi}. This combination of theoretical constructs can be systematically
improved with exact fully exclusive results order-by-order in αs, where cur-
rently the state of the art in such a calculation is the work in Ref. [28] which
accomplishes the combination of an exact O(αs) correction with HERWIG,
where the gluon azimuthal angle is averaged in the combination.

The issue of this being an exact rearrangement of the QCD and QED
perturbative series requires some comment. Unlike the threshold resumma-
tion techniques in Refs. [5–7], we have a resummation which is valid over
the entire phase space. Thus, it is readily applicable to an exact treatment
of the respective phase space in its implementation via MC methods.

We may illustrate how the combination with PYTHIA/HERWIG may
proceed as follows. We note that, for example, if we use a quark mass
mq as our collinear limit regulator, DGLAP [29] evolution of the structure
functions allows us to factorize all the terms that involve powers of the big
log Lc = ln µ2/m2

q − 1 in such a way that the evolved structure function

contains the effects of summing the leading big logs L = ln µ2/µ2
0 where

the evolution involves initial data at the scale µ0. This gives us a result
independent of mq for mq ↓ 0. In the DGLAP theory, the factorization scale
µ represents the largest pT of the gluon emission included in the structure
function.

In practice, when we use these structure functions with an exact result
for the residuals in (2), it means that we must in the residuals omit the
contributions from gluon radiation at scales below µ. This can be shown to
amount in most cases to replacing Ls = ln ŝ/m2

q − 1 → Lnls = ln ŝ/µ2 but

in any case it is immediate how to limit the pT in the gluon emission2 so
that we do not double count effects. In other words, we apply the standard
QCD factorization of mass singularities to the cross section in (2) in the
standard way. We may do it with either the mass regulator for the collinear
singularities or with dimensional regularization of such singularities. The
final result should be independent of this regulator and this is something
that we may use as a cross-check on the results.

This would in practice mean the following: We first make an event with
the formula in (4) which would produce an initial beam state at (x1, x2)
for the two hard interacting partons at the factorization scale µ from the
structure functions {Fj} and a corresponding final state X from the ex-
ponentiated cross section in dσ̂exp(xixjs), where we stress that the latter
has had all collinear singularities factorized so that it is much more conver-
gent then its analog in LEP physics for the electroweak theory for example.

2 Here, we refer to both on-shell and off-shell emitted gluons.
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The standard Les Houches procedure [30] of showering this event (x1, x2,X)
would then be used, employing backward evolution of the initial partons.
If we restrict the pT as we have indicated above, there would be no double
counting of effects. Let us call this pT matching of the shower from the
backward evolution and the matrix elements in the QCED exponentiated
cross section.

It is possible, however, to be more accurate in the use of the exact result

in (2). Just as the residuals ˜̄βn,m(k1, . . . , kn; k′
1, . . . , k

′
m) are computed order

by order in perturbation theory from the corresponding exact perturbative
results by expanding the exponents in (2) and comparing the appropriate
corresponding coefficients of the respective powers of αnαm

s , so too can the
shower formula which is used to generate the backward evolution be ex-
panded so that the product of the shower formula’s perturbative expansion,
the perturbative expansion of the exponents in (2), and the perturbative ex-
pansions of the residuals can be written as an over-all expansion in powers
of αnαm

s and required to match the respective calculated exact result for

given order. In this way, new shower subtracted residuals, {
̂̃̄
βn,m(k1, . . . , kn;

k′
1, . . . , k

′
m)}, are calculated that can be used for the entire gluon pT phase

space with an accuracy of the cross section that should in principle be im-
proved compared with the first procedure for shower matching presented
above. Both approaches are under investigation, where we note that the
shower subtracted residuals have been realized for the exact O(α) luminos-
ity Bhabha process at DAPHNE energies by the authors in Ref. [31].

Returning to the general discussion, we compute, with and without QED,
the ratio rexp = σexp/σBorn, where we do not use the narrow resonance
approximation, for we wish to set a paradigm for precision heavy vector
boson studies. The formula which we use for σBorn is obtained from that
in (4) by substituting dσ̂Born for dσ̂exp therein, where dσ̂Born is the respective

parton-level Born cross section. Specifically, we have from (1) the ˜̄β0,0-level
result

σ̂exp(x1x2s) =
vmax∫
0

dv γQCED vγQCED−1FYFS(γQCED)

×eδYFS σ̂Born((1 − v)x1x2s) , (5)

where we intend the well-known results for the respective parton-level Born
cross sections and the value of vmax implied by the experimental cuts under
study.

What is new here is the value for the QED⊗QCD exponent

γQCED =
(
2Q2

f

α

π
+ 2CF

αs

π

)
Lnls , (6)

where Lnls = ln x1x2s/µ
2 when µ is the factorization scale.
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The functions FYFS(γQCED) and δYFS(γQCED) are well-known [22] as
well:

FYFS(γQCED) =
e−γQCEDγE

Γ (1 + γQCED)
,

δYFS(γQCED) =
1

4
γQCED +

(
Q2

f

α

π
+ CF

αs

π

) (
2ζ(2) −

1

2

)
, (7)

where ζ(2) is Riemann’s zeta function of argument 2, i.e., π2/6, and γE is
Euler’s constant, i.e., 0.5772. . . .

Using these formulas in (4) allows us to get the results

rexp =





1.1901 , QCED ≡ QCD + QED , LHC
1.1872 , QCD , LHC
1.1911 , QCED ≡ QCD + QED , Tevatron
1.1879 , QCD , Tevatron.

(8)

We see that QED is at the level of 0.3% at both LHC and FNAL. This
is stable under scale variations [2]. We agree with the results in Refs. [15,
16, 18–20] on both of the respective sizes of the QED and QCD effects.
Furthermore, the QED effect is similar in size to structure function results
found in Refs. [9–13].

5. Conclusions

We have shown that YFS theory (EEX and CEEX), when extended to
non-Abelian gauge theory, allows simultaneous exponentiation of QED and
QCD, QED⊗QCD exponentiation. For QED⊗QCD we find that full MC
event generator realization is possible in a way that combines our calculus
with HERWIG and PYTHIA in principle. Semi-analytical results for QED
(and QCD) threshold effects agree with literature on Z production. As QED
is at the 0.3% level, it is needed LHC theory predictions at . 1%. The cor-
responding analysis of the W production is in progress. We have illustrated
a firm theoretical basis for the realization of the complete O(α2

s , ααs, α
2)

results needed for the FNAL/LHC/RHIC/ILC physics and all of the latter
are in progress.
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