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1. Einstein’s Theory

When Einstein formulated the theory that quickly became known as his
theory for Brownian motion, he did not know much about this motion1.
He was looking for observable consequences of what was then called the

molecular-kinetic theory of heat. So he was not concerned about the finer
details of specific situations. In fact, apart from dated mathematical lan-
guage, his papers on Brownian motion [1] remain paradigms for how to
model the essence of a phenomenon with ease and transparency by leaving
out everything that can possibly be left out.

The simplest version of his theory,

ẋ(t) = (2D)
1
2 η(t) , (1)

for the trajectory x(t) of a Brownian particle, here in one dimension and
in the language of Langevin [4, 5], works so well also for real experimental
situations that its extreme simplicity may be overlooked: No simplification
of this theory is possible. The white noise η(t) is the simplest possible:

For all t, t′, 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′) . (2)

When this noise is normalized as done here — as simple as possible — the
dimensions of x and η require that a constant with dimension of diffusion
coefficient appears where it does in Eq. (1). Equation (1) is mathematically
equivalent to the diffusion equation, introduced by Fick in 1857, in which
the diffusion coefficient D is already defined, and that determines the factor
2D in Eq. (1). The new physics was in Einstein’s assumption that Brownian
particles also diffuse, and in his famous relation, the fluctuation–dissipation
theorem

D = kBT/γ0 , (3)

which relates their diffusion coefficient D and their Stokes’ friction coef-
ficient γ0 via the Boltzmann energy kBT . It is derived by introducing a
constant external force field in Eq. (1), and assuming Boltzmann statistics
in equilibrium. For a spherical particle,

γ0 = 6πρνR , (4)

where ρ is the density of the fluid, ν its kinematic viscosity, and R is the
sphere’s radius.

1 Just how much he knew seems an open question that may never be answered [3].
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2. The Einstein–Ornstein–Uhlenbeck Theory

Details left out in the model described in Eqs. (1)–(4) will be found
missing, of course, if one looks in the right places. For example, the length
of the trajectory x(t) is infinite for any finite time interval considered2.
Ornstein and Uhlenbeck [6,7] showed that this mathematical absurdity does
not appear in Langevin’s equation [4],

mẍ(t) = −γ0ẋ(t) + Fthermal(t) , (5)

where m is the inertial mass of the Brownian particle, and the force from the
surrounding medium is written as a sum of two terms: Stokes friction, −γ0 ẋ,
and a random thermal force Fthermal = (2kBTγ0)

1/2 η(t) with “white noise”
statistical properties following from Eq. (2). The random motion resulting
from Eq. (5) is known as the Ornstein–Uhlenbeck process (OU-process). In
the limit of vanishing m, Einstein’s theory is recovered. Together, they make
up the Einstein–Ornstein–Uhlenbeck theory of Brownian motion.

The OU-process improves Einstein’s simple model for Brownian motion
by taking the diffusing particle’s inertial mass into account. As pointed
out by Lorentz [8], however, this theory is physically correct only when the
particle’s density is much larger than the fluid’s. When particle and fluid
densities are comparable, as in the motion Brown observed, neither Ein-
stein’s theory nor the OU-process are consistent with hydrodynamics. This
is seen from exact results by Stokes from 1851 and by Boussinesq from 1903
for the force on a sphere that moves with non-constant velocity, but van-
ishing Reynolds number, through an incompressible fluid. Hydrodynamical
effects that the OU-process ignores, are more important than the inertial
effect of the particle’s mass. These effects are the frequency-dependence of
friction and the inertia of entrained fluid. Stokes obtained the friction coef-
ficient, Eq. (4), for motion with constant velocity [9]. Brownian motion is
anything but that. Also, mass and momentum of the fluid entrained by a
sphere doing rectilinear motion with constant velocity is infinite according
to Stokes solution to Navier–Stokes equation [9, 10]. This gives a clue that
entrained fluid matters, and the pattern of motion too.

But since Einstein’s theory explained experiments well, this hydrody-
namical aspect of Brownian motion did not demand attention. Not until
computers made it possible to simulate molecular dynamics.

2 Consider an interval of duration t. Split it into N intervals of duration ∆t = t/N . In
each of these, the mean squared displacement of the Brownian particle is 2D∆t. So on
the average, the distance traveled in a time interval of duration ∆t is proportional to
(∆t)1/2

∝ N−1/2. Consequently, the distance traveled in a time interval of duration

t is proportional to t1/2
∝ N1/2. Let N → ∞, and the infinite trajectory has been

demonstrated. The proof can be made mathematically rigorous in the formalism of
Wiener processes, e.g., which is just the mathematical theory of Brownian motion.
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3. Computer simulations: More realistic than reality

In 1964–66 Rahman simulated liquid Argon as a system of spheres that
interacted with each other through a Lennard–Jones potential [11, 12]. He
measured a number of properties of this simple liquid, including the velocity
auto-correlation function φ(t) = 〈~v(t) · ~v(0)〉, which showed an initial rapid
decrease, followed by a slow approach to zero from below, i.e., there was a
negative long-time tail. Several attempts were made to explain his results
theoretically, with mixed success.

In the years 1967–1970 Alder and Wainwright simulated liquid Argon
as a system of hard spheres and observed hydrodynamic patterns in the
movement of spheres surrounding a given sphere, though all the spheres
supposedly did Brownian motion [13, 14]. Using a simple hydrodynamical
dimension argument, and supporting its validity with numerical solutions
to Navier–Stokes equations, they argued that the velocity auto-correlation
function has a positive power-law tail, φ(t) ∝ t−3/2 in three-dimensional
space. This result is in conflict with the velocity auto-correlation function
for the OU-process, which decreases exponentially, with characteristic time
m/γ. But the 3/2 power-law tail agrees also with Alder and Wainright’s
simulation results for a simple liquid of hard spheres doing Brownian motion.

This made theorists [15] remember Stokes’ result from 1851 for the fric-
tion on a sphere that moves with non-constant velocity: There are actually
two Stokes’ laws, published in the same paper [9]. Einstein had used the
simplest one, the one for movement with constant velocity, so the effect
of accelerated motion is not accounted for in his theory. Nor is it in the
Ornstein–Uhlenbeck theory. However, acceleration of a particle in a fluid
also accelerates the fluid surrounding the particle, in a vortex ring (in three
dimensions, and two vortices in two dimensions) that persists for long, dis-
appearing only by broadening at a rate given by the kinematic viscosity [14].
In this way the fluid “remembers” past accelerations of the particle. This
memory affects the friction on the particle at any given time in a manner
that makes the dynamics of the particle depend on its past more than iner-
tial mass can express. The result is an effective dynamical equation for the
particle, Newton’s Second Law with a memory kernel, as we shall see.

4. Stokes friction for a sphere in harmonic rectilinear motion

The friction coefficient that is relevant for a more correct description
of Brownian motion, differs from the friction coefficient that most often is
associated with Stokes’ name, Eq. (4), but it is actually the main subject
of reference [9]. Stokes was not addressing the hydrodynamics of Brownian
motion in 1851, but the hydrodynamics of an incompressible fluid surround-
ing a sphere that does rectilinear harmonic motion with no-slip boundary
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condition, at vanishing Reynolds number, and with the fluid at rest at in-
finity. The equations describing this motion are linear, however, and any

trajectory of a particle can be written as a linear superposition of harmonic
trajectories, by virtue of Fourier analysis [16]. So the flow pattern around
a sphere following any trajectory can be written as a superposition of flows
around spheres in harmonic motion, as long as the condition of vanishing
Reynolds number is satisfied by the arbitrary trajectory. It is for a Brownian
particle’s trajectory, so Stokes’ result for harmonic motion is fundamental
for the correct description of Brownian motion.

In general, the instantaneous friction experienced by a rigid body that
moves through a dense fluid-like water, depends on the body’s past motion,
since the past motion determines the fluid’s present motion. For a sphere
performing rectilinear harmonic motion x(t; f) with cyclic frequency ω =
2πf in an incompressible fluid and at vanishing Reynolds number, Stokes
found the “frictional” force [9], [10, §24, Problem 5],

Ffriction(t; f) = −γ0

(

1 +
R

δ(f)

)

ẋ(t; f)

−

(

3πρR2δ(f) +
2

3
πρR3

)

ẍ(t; f) (6)

= −γStokes(f) ẋ(t; f) ;

γStokes(f) ≡ γ0

(

1 + (1 − i)
R

δ(f)
− i

2R2

9δ(f)2

)

, (7)

where only the term containing ẋ(t; f) = −i2πfx(t; f) dissipates energy,
while the term containing ẍ(t; f) = −(2πf)2x(t; f) is an inertial force from
entrained fluid. The notation is the same as above: γ0 is the friction coef-
ficient of Stokes’ law for rectilinear motion with constant velocity, Eq. (4).
The penetration depth δ characterizes the exponential decrease of the fluid’s
velocity field as function of distance from the oscillating sphere. It is fre-
quency dependent,

δ(f) ≡ (ν/πf)
1
2 = R(fν/f)

1
2 , (8)

and large compared to R for the frequencies we shall consider. For a
sphere with diameter 2R = 1.0µm in water at room temperature where
ν = 1.0µm2/µs, fν ≡ ν/(πR2) = 1.3MHz.

Note that the mass of the entrained fluid, the coefficient to ẍ in Eq. (6),
becomes infinite in the limit of vanishing frequency f , i.e., the flow pat-
tern around a sphere moving with constant velocity has infinite momentum,
according to Stokes’ steady-state solution to Navier–Stokes’ equations.
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5. Beyond Einstein and Smoluchowski: Brownian motion

respecting Stokes equation

The friction on a sphere that, without rotating, follows an arbitrary
trajectory x(t) with vanishing Reynolds number in an incompressible fluid
that is at rest at infinity, is found by Fourier decomposition of x(t) to a
superposition of rectilinear oscillatory motions x̃(f). Using Eq. (6) on these,
gives

F̃friction(f) = −γStokes(f)(−i2πf) x̃(f) , (9)

which Fourier transforms back to [16],

Ffriction(t) = −γ0 ẋ −
2

3
πρR3 ẍ(t) − 6πρR3f1/2

ν

t
∫

−∞

dt′(t − t′)−1/2 ẍ(t′) . (10)

So the Langevin equation (5) is replaced by [17,18]

mẍ(t) = Ffriction(t) + Fexternal(t) + Fthermal(t) , (11)

where Fexternal denotes all external forces on the sphere, such as gravity
or optical tweezers, and Fthermal denotes the random thermal force on the
sphere from the surrounding fluid.

Several authors have derived expressions for the thermal force using dif-
ferent arguments and finding the same result

F̃thermal(f) = (2kBT ReγStokes(f))
1
2 η̃(f) ; (12)

see overviews in [19,20] 3. Briefly, Brownian motion in a fluid is the result of
fluctuations in the fluid described by fluctuating hydrodynamics [10, Chapter
XVII]4. In this theory one assumes that the random currents split up into
systematic and random parts, the former obeying (Navier–)Stokes equation,
the latter obeying a fluctuation-dissipation theorem. From this theory one
derives the expression of the thermal force on a sphere in the fluid.

Note that this description did not invoke a scenario of randomly mov-
ing molecules that bump into the micro-sphere and thus cause its Brownian
motion. This scenario is correct for Brownian motion in a dilute gas. It is of
great pedagogical value in undergraduate teaching. But it does not apply to

3 Here we have written the frequency-dependent noise amplitude explicitly, and to this
end introduced η̃(f), the Fourier transform of a white noise η(t), normalized as in (2).

4 Readers familiar with the Green–Kubo theory of linear response to perturbations
may appreciate fluctuating hydrodynamics as a case where the order of linearization

and “stochastization” [21, Sect. 4.6] is a non-issue by virtue of the Reynolds number
for thermal fluctuations.
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fluids! The scientific literature shows that some undergraduates proceed to
become scientists without realizing this limitation on the scenario’s validity.
However, the coarse-grained description that replaces a molecular descrip-
tion with a hydrodynamical one, is a very good approximation on the length-
and time-scales of the thermal fluctuations that drive the Brownian motion
of a micron-sized sphere in a fluid. This is why fluctuating hydrodynam-
ics [10, Chapter XVII] is formulated by a “stochastization” [21, Sect. 4.6] of
Navier–Stokes equation, and not by coarse-graining Langevin equations for
individual molecules in the fluid. The correct physical scenario to bear in
mind is one of molecules squeezed together “shoulder-to-shoulder” in a man-
ner that allows only collective motion, similar to that observed in a tightly
packed crowd of people.

Eqs. (10)–(12) constitute the accepted hydrodynamically correct theory
for classical Brownian motion, i.e., in an incompressible fluid. It differs from
Einstein’s theory in a manner that matters in practice with the precision that
optical tweezers have achieved recently [23–25]; see Fig. 1.

Fig. 1. The power spectrum of Brownian motion in an optical trap according to Ein-

stein’s theory, PLorentz, divided by the hydrodynamically correct power spectrum

for the same motion, PHydro; see [23] for explicit expressions for the two spectra.

Fully drawn line: Trap with Hooke’s constant 3.8×10−2 pN/nm for a micro-sphere

with diameter 1 µm. Dashed line: Hooke’s constant 1.9×10−2 pN/nm for a micro-

sphere with diameter 0.5 µm. At low time resolution, i.e., low frequency, the error

vanishes. Einstein made an excellent approximation when he chose Stokes’ law for

constant velocity to characterize motion along a fractal trajectory.
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Power spectra of micro-spheres in optical traps can be measured with
stochastic errors of a few per mil [23, 25]. So the differences in Fig. 1 be-
tween Einstein’s simple theory and the hydrodynamically correct theory for
Brownian motion in a fluid can be exposed experimentally [23, 26, 27]. The
form of the thermal force in Eq. (12), on the other hand, remains a theoret-
ical result. It is not a controversial result, it is not questioned. But because
it is a small effect, it has not yet been demonstrated experimentally.

6. Power-law tails

In the absence of external forces, the position power spectrum of Brow-
nian motion following from Eqs. (10)–(12) is

P (f) ∝ 〈|x̃2|〉 ∝
2kBTReγStokes(f)

|m(2πf)2 + i2πfγStokes(f)|2
. (13)

Here, the frequency-dependent numerator is the power spectrum of the ther-
mal force in Eq. (11), while the denominator is given by the other terms in
Eq. (11). The frequency-dependent friction coefficient, γStokes(f), appears
both in numerator and denominator, and both appearances contribute, with
opposite signs, to the t−3/2 power-law tail in the velocity auto-correlation
function.

By Wiener–Khintchine’s theorem, the velocity auto-correlation function
is

φ(t) = 〈ẋ(t)ẋ(0)〉 ∝

∞
∫

−∞

dfe−i2πtf (2πf)2P (f) . (14)

At asymptotically large values of t, φ(t) is given by P (f)’s behavior at small
values of f ,

(2πf)2P (f) = 2D(1 − (f/fν)
1/2 + O(f/fν)) . (15)

Hence

φ(t) =
D

2πf
1/2
ν

t−3/2 + O(t−5/2) for t → ∞ , (16)

quite different from the exponential decrease following from Einstein’s simple
theory, but not conceptually different from it [15, 17, 18].

Experimental evidence for this power-law tail remained sparse for years.
Dynamic light scattering offered promise of its observation, but only Boon
and Boullier [28, 29] reported an experimental result of the magnitude pre-
dicted theoretically, with statistical errors about half the size of the sig-
nal. Paul and Pursey used photon correlation dynamic laser light scatter-
ing to measure the time dependence of the mean squared displacement of
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polystyrene spheres with radius R ∼ 1.7µm [30]. They found clear evidence
for the expected t−3/2-behavior (t1/2 in the mean squared displacement),
but with an amplitude of only 74±3% of that predicted theoretically. They
never found the reason why 26% of the theoretically expected amplitude
was missing [31]. Ohbayashi, Kohno, and Utiyama [32] also used photon
correlation spectroscopy, on a suspension of polystyrene spheres with radius
0.80µm, and found agreement between the theoretical amplitude of the t−3/2

tail and their experimental results which has 9–10% error bars. Their re-
sults also agree with the predicted significant temperature dependence. This
convincing experiment thus supports the validity of the theory Eq. (11).

For 22 years this remained the experimental status of the power-law tail
of the velocity auto-correlation function of classical Brownian motion. Then
in October 2005 Ref. [27] appeared. The velocity auto-correlation function is
not given in [27], though its authors have measured what it takes to display
its power-law tail. Instead, they show the mean-squared-displacement of
a diffusing micro-sphere. That quantity is essentially the velocity auto-
correlation function integrated twice, and consequently contains the same
power-law integrated twice. In practise, however, integration reduces noise,
and integrating twice reduces noise even more. Also, the ad hoc re-scaling of
amplitudes that leads to the data collapse in Fig. 2 in [27], is an elegant way
to sweep a calibration problem under the rug: Parasitic filtering [22,23,25] in
the photo-diode used for rapid position detection . So in view of these limits
on the pioneering result presented in [27], it is fair to claim that a direct
observation of the power law tail of the velocity auto-correlation function
remains to be produced: It is an open experimental subject!

7. The color of thermal noise in classical Brownian motion:

An experimental feasibility study

The amplitude that was measured in all these experiments, albeit indi-
rectly with photon correlation spectroscopy, is the first-order term in the
expansion of P (f) above, Eq. (15), in powers of (f/fν)

1/2. This coefficient
has two contributions: One from the denominator, from Stokes’ frequency-
dependent friction coefficient, and another from the numerator. The latter
is half-as-large as the former, and with opposite sign. It stems from the
noise term’s frequency dependence.

Instead of measuring a photon correlation function for laser light scat-
tered off a suspension of micro-spheres, developments in instrumentation [24]
and data analysis [23, 25] for optical tweezers have made it possible now
to measure directly, with accuracy and precision, on a single micro-sphere
[27,33,34]. Thus it just might be possible to observe directly the “color” of the
thermal noise, the frequency dependence of the non-white power spectrum,
in a very challenging single-particle experiment with optical tweezers [35]:
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When a microsphere is held in an optical trap with trapping force
Fexternal(x) = −κx while its position x(t) is recorded for a long, but fi-
nite time Tmsr, the resulting experimental power spectrum of its Brownian
motion is [23]

P
(ex)
k =

|x̃k|
2

Tmsr
=

2kBT ReγStokes(fk)|η̃k|
2/Tmsr

|κ − i2πfkγStokes(fk) − m(2πfk)2|
2 . (17)

Here, x̃k and η̃k are the Fourier transforms of x(t) and η(t) on the finite time
interval of recording

x̃k =

Tmsr/2
∫

−Tmsr/2

dt ei2πfktx(t) , fk ≡ k/Tmsr , k integer. (18)

From Eq. (2) it then follows that

〈η̃k〉 = 0 ; 〈η̃∗kη̃ℓ〉 = Tmsrδk,ℓ ; 〈|η̃k|
4〉 = 2T 2

msr , (19)

and, since the real and imaginary parts of η̃k are uncorrelated, Gaussian dis-
tributed, real random variables, (|η̃k|

2)k=1,2,... are uncorrelated non-negative

random variables with exponential distribution. Consequently, (P
(ex)
k )k=1,2,...

are uncorrelated non-negative exponentially distributed random variables,
each of which consequently has RMSD equal to its expectation value. This
expectation value is

Phydro(f) = 〈P
(ex)
k 〉 =

D/(2π2)
(

1+(f/fν)
1/2

)

(

fc − f3/2/f
1/2
ν − f2/fm∗

)2
+

(

f +f3/2/f
1/2
ν

)2 ,(20)

where the corner frequency fc = κ/(2πγ0) characterizes the strength of
the trapping force, and fm∗ ≡ γ0/(2πm∗) ≃ 3fν/2 = 1.9MHz as m∗ ≡
m + 2πρR3/3 ≃ 3m/2 for a polystyrene bead with diameter 1µm.

The low-frequency limit of this power spectrum is

Phydro(f) =
2D

(2πfc)2
1 + (f/fν)

1/2

1 + O(f3/2/(f
1/2
ν fc))

. (21)

Here, the frequency-dependent numerator is the power spectrum of the ther-
mal force, the colored thermal noise, in the Langevin Eq. (11). It is a first-
degree polynomial in f1/2. The numerator, on the other hand, is just a
constant, f2

c , to leading order in f1/2, and to first and second order in f1/2.
In other words, in the low-frequency limit considered here, the dynamics
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of the micro-sphere is not seen when it is held in a strong trap. Only the
thermal force that bounces it about in the trap, is seen in the power spec-
trum. The sphere itself moves adiabatically with the force so that it always
is at a position in the trap where the trapping force exactly balances the
“instantaneous” value of the thermal force. We write “instantaneous” with
citation marks because we are discussing a low-frequency approximation, so
“instantaneous” means “instantaneous with the limited time resolution we
have at this low frequency”. This qualitative explanation has a quantita-
tive underpinning in Eq. (11). The physical meaning of the approximation
in Eq. (21) that leaves the denominator constant, equal to f2

c , is: It cor-
responds to neglecting the inertial force on the left-hand-side of Eq. (21)
relatively to the other terms — e.g., the friction force — entirely as usual,
and to neglecting also this friction force relatively to the trapping force.
This gives, with Fexternal(t) = −κx(t), the approximate equation

κx(t) = Fthermal(t) , (22)

which shows that once we have calibrated the trap, found κ, e.g., as in [23],
then we can record the thermal force simply by recording x(t): The micro-
sphere in the trap has become a force-meter, with the micro-sphere playing
the role of the pointer arrow, and its displacement from the traps’s center is
a calibrated linear measure of the “instantaneous” thermal force. The time
resolution for which this scenario holds, corresponds to f ≪ fc, as seen from
Eq. (21).

Popular speaking, we have used optical tweezers to separate the thermal
forces acting on the micro-sphere from the dynamic response of the sphere.
In practice, this might be used to demonstrate the colored noise experimen-
tally as follows.

The constant Phydro(0) = 2D/(2πfc)
2 can be determined experimen-

tally with high precision by fitting Eq. (20) to the experimental power spec-
trum [23]. That done, the value of this constant can be divided into the
experimental spectral values. After subtraction of 1, one has left a residue
with expectation value

Phydro(f)

Phydro(0)
− 1 = (f/fν)

1/2 + O(f3/2/(f1/2
ν fc)) , (23)

i.e., a simple power-law relationship to leading order. Thus, when plotted
with double-log axis, this re-scaled and subtracted version of the experimen-
tal power spectrum should fall on a straight line with slope 1/2 and known
intercept given by fν , as illustrated in Fig. 2.

Whether this behavior is demonstrated convincingly or not, depends on
the theory being correct, of course, but also very much on the signal-to-
noise ratio in the experimental power spectrum, one has recorded. Fig. 2
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Fig. 2. Double-log plot of Phydro(f)/Phydro(0) − 1 for the optimal realistic case of

micro-sphere diameter 2R = 1 µm and fc = 5 kHz. Straight dotted line: leading-

order approximation (f/fν)1/2. Fully drawn line: exact expression from Eq. (20).

shows that in order to observe one decade of power law behavior where it
is most easy, in the interval [20Hz, 200Hz], one must be able to distinguish
P (f)/P (0) from 1 to within 1 per mil. This precision is achievable in a power
spectrum of the kind discussed here [23], but it has not been demonstrated
that it can be obtained at the very low frequencies of interest here, where
low-frequency noise external to the experiment contributes significantly to
the power spectrum [23, figure 7B] unless extreme care is taken to suppress it.

Also, the lower the frequency at which one wants the spectral value
with precision, the longer one must measure, when the goal, as here, is
a set of spectral values equidistantly spaced on the logarithmic frequency
axis [23, Figs. 5A and 6A]. If, e.g., one wants to achieve 1 per mil precision
on a data point at 20Hz by “blocking” experimental power spectral values
in the interval [10Hz, 40Hz], then one needs 106 power spectral values in
that interval, since non-averaged experimental power spectral values scatter
exponentially about their expectation value, i.e., with RMSD equal to the
expectation value. If one records x(t) for a time Tmsr, Fourier transformation
as in Eq. (18) yields an experimental power spectral value at a discrete set of
frequencies fk equidistantly separated by ∆f = 1/Tmsr. So to get 106 such
frequencies in an interval of length 30Hz, one must measure for a time Tmsr =
106/30Hz= 9hrs. Alternatively, one may use “windowing” and average many
independent experimental power spectra to achieve a similar noise reduction,
or a combination of both methods [23]. Either way, or combining “blocking”
and “windowing,” one must measure for 9 hrs. That done, one has also,
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from the same recording, data points at higher frequencies, and with better
precision, if they are equidistantly spaced on the logarithmic frequency axis,
as one wants them to be here [23, Figs. 5A and 6A].

This long measurement is by necessity and with advantage broken into
many much, much shorter windows of measurement. But the experiment is
not allowed to drift much in the course of those 9 hrs, not w.r.t. quantities
affecting the spectrum, i.e., quantities affecting fν . These are R, the radius
of the sphere, and ν, the kinematic viscosity of the fluid used. So changing
sphere during the experiment is not a good idea, and holding on to one
sphere for 9 hrs is a challenge. Temperature control is also a must, as ν is
quite dependent on temperature in the case of water. Temperature control
may also be a challenge as a strong trap is needed, and it heats the fluid
near the sphere [36].

Fig. 3 shows the same function as Fig. 2, but in a log-lin plot, together
with the function one would get if the thermal noise were white in Eq. (11).
If one sets the less ambitious goal of distinguishing experimentally between
white and predicted colored noise, less precision is needed, say 1%, and one
needs only record 5min’s worth of Brownian motion.

Fig. 3. Log-lin plot of same leading-order approximation (f/fν)1/2 (dotted line)

and exact result for Phydro(f)/Phydro(0) − 1 (fully drawn line) as in Fig. 2, and,

for comparison, the power spectrum of the motion that would result from Eq. (11)

if the noise in it were white as in Einstein’s theory (dashed line). This is not an

option, according to the fluctuation-dissipation theorem [19], but serves well as a

bench mark.
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8. In situ calibration of optical tweezers by forced

nano-scale motion

There are many ways to calibrate an optical trap. Some ways are better
than others if accuracy and precision is a concern. In that case, the best
way is based on the motion’s power spectrum [23]. Two aspects must be
calibrated: The spring constant of the Hookean force exerted by the trap on
a trapped micro-sphere (bead), and, to this end, the millivolt-to-nanometer
calibration factor. The latter tells us which nanometer-displacement of the
bead in the trap corresponds to a measured millivolt-change in output poten-
tial of a photo diode in the position detection system used with the tweezers.
A common way to determine this calibration factor requires that one knows
the radius of the bead, the temperature and dynamic viscosity of the fluid
surrounding it, and its distance to the nearby surface of the microscope cover
slip, if, as is usually the case, the experiment is done near this surface. One
can then calculate the bead’s diffusion coefficient in m2/s using Stokes’ law
Eq. (4), Einstein’s relation Eq. (3), and Faxén’s formula [37,38] [23, Sect. XI].
By comparing the result with the same quantity measured experimentally
in V2/s, the calibration factor is determined.

Fig. 4. Power spectrum of 1.54 µm diameter silica bead held in laser trap with

corner frequency fc = 538 Hz. The sample moves harmonically with amplitude

A = 208 nm and frequency fstage = 28 Hz. The power spectrum shown is the

average of 48 independent power spectra, sampled at frequency fsample = 20 kHz.

The total sampling time was 79 s, which is six times more than we normally would

need to calibrate. It was chosen for the sake of illustration, to reduce the relative

amplitude of the Brownian motion, i.e., the scatter in the spectrum away from the

spike at 28 Hz.
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A calibration of the photo diode that is much less dependent on a priori
knowledge, can be achieved by moving the fluid cell with the bead harmon-
ically relatively to the laboratory with the optical trap [33]. With a piezo-
electric translation stage this can be done accurately with an amplitude of
order of 100 nm and frequency of order of 30 Hz. In the laboratory system
of reference, the fluid flows back and forth through the stationary trap with
harmonically changing velocity. This gives rise to an external force on the
trapped bead in Eq. (11), a harmonically changing Stokes friction force

Fexternal(t) = γ0vstage(t) = γ02πfstageA cos(2πfstage(t − t0)) , (24)

where A and fstage are, respectively, the amplitude and frequency with which
the stage is driven, and t0 is its phase. The amplitude A can be chosen so
small that the forced harmonic motion of the bead in the trap is masked
by its Brownian motion, when observed in the time domain. Nevertheless,
when observed long enough, the forced harmonic motion stands out in the
power spectrum of the total motion as a dominating spike; see Fig. 4. This
spike is the dynamic equivalent of the scale bar plotted in micrographs:
The “power” contained in it is known in m2/s because the bead’s motion in
nanometers follows from its equation of motion and the known motion of
the stage, measured in nanometers. The bead’s motion is measured in Volts,
however, by the photo-detection system, and the Volt-to-meter calibration
factor depends on the chosen signal amplification, laser intensity, etc. So
calibration is necessary. It is done by identifying the two values for the power
in the spike: The measured value in V2/s with the known value in m2/s
[33]5. This method resembles an old method of calibration that moves the
bead back and forth periodically with constant speed, but harmonic motion
has a number of technical advantages. One is that the precision of power
spectral analysis demonstrated in [23, 25] can be maintained, while adding
the advantage of not having to know the bead’s radius, nor its distance to a
nearby surface, nor the fluid’s viscosity and temperature. On the contrary,
the combination of these parameters that occurs in the expression Eq. (3)
for the bead’s diffusion coefficient, is determined experimentally from its
Brownian motion, so, e.g., the bead’s radius is measured to the extent the
other parameter values are known. But also this calibration method can be

5 A spike similar to the one shown here in Fig. 4 is seen in [39, Fig. 1b]. It was produced
with a bead embedded in polyacrylamide, hence not moving thermally, and not opti-
cally trapped. It was used to demonstrate the high sensitivity of the authors’ position
detection system. It was also used for Volts-to-meters calibration of the detection
system, and gave 10% agreement with the same calibration factor obtained from the
power spectrum of Brownian motion. The optical properties of polyacrylamide differ
from those of water, however, so it is an open question how accurate that calibration
method can be made. Obviously, it is not an in situ calibration method.
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used in situ, where an experiment is to be done, by confining the bead’s
forced motion to this environment. This is useful for measurements taking
place near a surface, in a gel, or inside a cell.

9. Biological random motion

Robert Brown did not discover Brownian motion, and he, a botanist,
got his name associated with this physical phenomenon because he in 1827
carefully demonstrated what it is not, a manifestation of life, leaving the
puzzle of its true origin for others to solve. Brownian motion has been
known for as long as the microscope, and before the kinetic theory of heat
it was natural to assume that “since it moves, it is alive”. Brown killed
that idea. But after Einstein in 1905 had published his theory for Brownian
motion, Przibram in 1913 demonstrated that this theory describes also the
self-propelled random motion of protozoa [40]. By tracking the trajectories
~x(t) of individual protozoa, see Fig. 5, Przibram demonstrated that the
net displacement ~x(t) − ~x(0) averages to zero, while its square satisfies the
relationship known for Brownian motion,

〈~d(t)2〉 = 2ndimDt , (25)

where ndim is the dimension of the space in which the motion takes place.
In Einstein’s theory D is the diffusion coefficient, and satisfies his famous

relation Eq. (3). Przibram found a value for D which was much larger
and much more sensitive to changes in temperature than Einstein’s relation
states. He used this as proof that it was not just Brownian motion that he
had observed.

If Przibram, a biologist, had used a better time resolution by marking
out points in Fig. 5 more frequently than every four seconds, he might also
have gotten ahead of the physicists in theoretical developments. But he was
drawing by hand, marking time to a metronome, so marking points closer
to 1Hz must have been a challenge.

Fürth, a physicist at the German university in Prague where Einstein
had been a professor for 16 months in 1911–12, also studied the motility of
protozoa. First he repeated Przibram’s results, apparently without knowing
them [41]. Later he found that his data [42] were not described by Eq. (25).
He consequently considered a random walker on a lattice, and gave the
walker directional persistence in the form of a bias towards stepping in the
direction of the step taken previously. By taking the continuum limit, he,
independently of Ornstein [6,7], demonstrated that for random motion with
persistence, Eq. (25) is replaced by
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〈~d(t)2〉 = 2ndimD(t − P (1 − e−t/P )) , (26)

where P is called the persistence time, and characterizes the time for which
a given velocity is “remembered” by the system [42].

Fig. 5. Example of Przibram’s motility data, a trajectory of a protozoon, hand-

drawn with a mechanical tracking device operated in real time with a microscope.

A metronome was used to mark time on the trajectory every four seconds [40].

Ornstein solved Eq. (5), since known as the Ornstein–Uhlenbeck (OU)
process. Its solution also gives Eq. (26), with P ≡ m/γ. The physical mean-
ing of the three terms in the OU-process does not apply for cells: Their ve-
locities are measured in micrometers per hour, so their inertial mass means
absolutely nothing for their motion. Friction with the surrounding medium
also is irrelevant — the cells are firmly attached to the substrate they move
on — and it is not thermal forces that accelerate the cells. But as a math-
ematical model the OU-process is the simplest possible of its kind, like the
harmonic oscillator, the Hydrogen atom, and the Ising model. It also agree
with the earliest data. Consequently, the OU-process became the standard
model for motility. We can write it as

P
d~v

dt
= −~v + (2D)1/2~η , (27)
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where each component of ~η is a white noise normalized as in Eq. (2) and
uncorrelated with the other components

〈~η(t)〉 = ~0 ; 〈ηj(t
′)ηk(t

′′)〉 = δj,kδ(t
′ − t′′) . (28)

Here δ(t) and δj,k are, respectively Dirac’s and Kronecker’s δ-functions, and
~η(t) is assumed uncorrelated with ~v(t′) for t ≥ t′. Fürth’s formula Eq. (26)
is a consequence of Eqs. (27) and (28), but follows also from other, similar
theories. It was often the only aspect of the theory that was compared with
experimental data, and with good reason, considering the limited quality of
data.

Gail and Boone [43] seem to have been the first to model cell motility
with Eq. (26). They did a time study of fibroblasts from mice by measur-
ing the cells’ positions every 2.5 hrs. Eq. (26) fitted their results fairly well.
Since then, cell motility data have routinely been fitted with Eq. (26). Its
agreement with data can be impressive, and is usually satisfactory — some-
times helped by the size of experimental error bars and few points at times
t that are comparable to P . Data with these properties cannot distinguish
Eq. (26) from other functions that quickly approach 2ndimD(t − P ).

Eq. (26) is essentially a double integral of the velocity auto-correla-
tion function φ(t) of the OU-process, where

φ(t) = 〈~v(0) · ~v(t)〉 =
ndimD

P
e−|t|/P . (29)

Experimental results for the velocity auto-correlation function are better
suited for showing whether the OU-process is a reasonable model for given
data. But experimental results for velocities are calculated as finite dif-
ferences from time-lapse recordings of positions. If the time-lapse is short,
precision is low on differences, hence on computed velocities. Yet, if the time-
lapse is longer, the time resolution of the motion is poor. The solution is
somewhere in between, compensating for lost precision with good statistics.
Good statistics was not really achievable till computer-aided object-tracking
became possible.

10. Enter computers

We recently wanted to characterize the compatibility of human cells with
various surfaces by describing the cells’ motility on the various surfaces [44].
Computer-aided cell tracking — see Fig. 6 — quickly gave us so much data
that we found ourselves in a new situation with regards to modeling: We
were not limited to showing whether or not there is agreement between data
and a few consequences of a given model. We could investigate the model
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Fig. 6. Isolated human dermal keratinocytes are motile by nature. If not sur-

rounded by other cells, they react as if in a wound: They search for other cells of the

same kind with which they can connect to form skin. Trajectories are formed from

15 min time-lapse photography. Trajectories as those shown here in the right panel

make up the raw data that are analyzed statistically to find a suitable stochastic

model for the motility of these keratinocytes. The black bar is 0.2 mm long.

itself experimentally, measure each term in its defining equation, check that
their assumed properties are satisfied, and whether together they satisfy the
equation of motion.

Furthermore, before we checked the equation of motion, we could check
whether the data are consistent with various assumptions of symmetry and
invariance on which the equation of motion is based. We found that the
cells behaved in a manner consistent with the assumptions that their sur-
roundings are isotropic, homogenous, and constant in time. This allowed us
to average data over all directions, places, and times. This in turn improved
the statistics of our investigation of the equation of motion [44].
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11. Tailor-made theory replaces “One theory fits all”

The theory in Eq. (27) states that for a given velocity ~v the acceleration
is a stochastic variable with expectation value proportional to ~v,

〈

d~v

dt

〉

~v

= −~v/P . (30)

Fig. 7, panels A, B shows that this is also the case for experimental data.

The theory in Eq. (27) states also that

d~v

dt
−

〈

d~v

dt

〉

~v

=
d~v

dt
+ ~v/P = (2D)1/2~η , (31)

i.e., that this quantity in the OU-process is a white noise with the same
speed-independent amplitude in both directions: parallel and orthogonal to
the velocity.

Fig. 7, panel B shows that experimentally the amplitude of the two
components of this noise are indeed indistinguishable in the two directions,
but the two amplitudes are clearly not independent of the speed! Here we
see the experimental data reject the OU-process as model. The distribution
of experimentally measured values of the noise also reject the OU-process
as model. Fig. 7, panel D shows clearly that it is not Gaussian, as it is
in the OU-process. Apart from that, Fig. 7, panel D shows that the noise
is uncorrelated, like in (28), on the time scale where we have measured
it. This result radically simplifies the mathematical task of constructing
an alternative to the OU-process on the basis of experimentally determined
properties of these cells’ motility pattern.

The velocity auto-correlation function of the OU-process is a simple ex-
ponential, (29). Fig. 7, panel E shows the experimentally measured velocity
auto-correlation function. It is fitted perfectly by the sum of two exponen-
tials, so again the experimental data reject the OU-process as model.

The data shown in Fig. 7 are so rich in information that with a few
assumptions favored by Occam’s Razor one can deduce from the data which
theory it takes to describe the data, and this theory is unambiguously defined
by the data [44]. Results from this theory are shown as the fully drawn
curves passing through the data points in Fig. 7. It is given by the stochastic
integro-differential equation

d~v

dt
(t) = −β~v(t) + α2

t
∫

−∞

dt′e−γ(t−t′)~v(t′) + σ(v(t))~η(t) , (32)
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Fig. 7. Part I. Statistics accumulated from trajectories like those shown in Fig. 6.

A: The two components of the acceleration, as functions of speed. Panels A1 and

A2 show the acceleration parallel with, respectively orthogonal to, the velocity.

These scatter plots show that the two functions contain random parts, like the

acceleration in Eq. (27). B: Data points with error bars: Mean and standard

deviation as function of speed for data shown in panel A. Curves show the same

quantities, plus/minus one standard deviation, calculated from the theory given in

Eq. (32). C: Correlation functions for scatter shown in panel A. Panels C1 and

C2 show the auto-correlations of the two components, C3 and C4 show the cross-

correlation between the two, for both signs of the time difference. The many values

shown are almost all indistinguishable from zero. This suggests that the scatter in

data can be modeled with uncorrelated noise, as in (28). This is an experimental

result for the theory we seek. The curves shown are not fits to the data shown, but

results of Eq. (32) after it has been fitted to data in panels B, E, and F.
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Fig. 7. Part II. Statistics accumulated from trajectories like those shown in Fig. 6.

D: Histograms of scatters shown in panel A, measured relatively to the means

shown in panel B, and in units of the standard deviations shown in panel B. The

curves shown are not fits to the histograms shown, but results of Eq. (32) after

it has been fitted to data in panels B, E, and F. E: Velocity auto-correlation

function, calculated from trajectories like those shown in Fig. 6. It is not a simple

exponential as in (29). But a sum of two exponentials fit data perfectly. So we

assume that the theory we seek has a velocity auto-correlation function that is a

sum of two exponentials. The curves through the data points are that correlation

function, plus/minus one standard deviation, computed with the theory in Eq. (32),

after it has been fitted to the data shown here, and simultaneously to the data in

panels B and F. F: Histograms of speeds and (speed)2 read off trajectories like

those in Fig. 6. The curves shown are the same speed distributions calculated from

the theory in Eq. (32), after it has been fitted to the data.

where
σ(v) = σ0 + σ1v . (33)

The integral over past velocities in Eq. (32) is called a memory-kernel by
mathematicians. It shows that these cells have memory. This is no surprise:
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The polarity of the cytoskeleton of a moving cell is a manifest memory
of direction, and while its instantaneous velocity depends on the activity
of transient pseudopodia, the fact that pseudopodia are active depends on
states of the cell that last longer than the individual pseudopod, one would
expect.

Note the similarity between Eq. (32) and the hydrodynamically correct
theory for Brownian motion, Eqs. (10),(11). Though both are more complex
than Einstein’s theory, applied by Przibram, and the OU-process, applied
by Fürth, they still have much in common. This is so because they both are
linear and both respect causality and the same space-time symmetries.

Linearity is simplicity, so wherever in modeling it is sufficient, one avoids
going beyond it. This is why Eqs. (10),(11) and Eq. (32) are both linear.

The Principle of Causality states that the future does not affect the
present, including present rates of change of state variables. Only the past
can do this. This principle is respected throughout physics, and we have
of course built it into our motility models as well. This is why the rate of
change of the velocity given in Eqs. (10),(11), respectively Eq. (32), depends
only on past and present velocities. The integral kernels occurring in both
equations are memory kernels in order to respect this principle.

In a homogenous, isotropic environment that is constant in time, there is
no absolute position, direction, nor time. A theory for a dynamical system in
such an environment consequently cannot depend on the position variable ~x,
nor can it depend explicitly on the time variable t, nor on explicit directions
in space. The theory must be translation invariant in space, time, and with
respect to direction. The last invariance is called covariance under rotations,
because a theory for a vector variable like the velocity is not invariant under
rotations of the coordinate system, it is covariant, i.e., transforms like the
vector it describes. Because these space-time symmetries are shared by
hydrodynamics and our cells, neither Eqs. (10),(11) nor Eq. (32) depends
on ~x, nor explicitly on t, and both models transform like a vector under
rotations.

We conclude that with the rich data that one now can record and process,
one should not be satisfied with the simplest possible model for persistent
random motion, the OU-process. “One size fits all” is no longer true, if it
ever was. Motility models can be made to measure. Here we have only
presented the first phenomenological steps of that process: How to plot and
read motility data in a manner that reveals mathematical properties of the
theory sought. That done, it is another task to construct a model with the
properties demanded. If that can be done, it is yet another task to decide
whether the theory is unique or not. Two examples of such theories and
their derivation are given in [44].
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