
Vol. 38 (2007) ACTA PHYSICA POLONICA B No 8

DYNAMIC PHASE TRANSITION IN THE KINETIC
SPIN-3/2 BLUME–EMERY–GRIFFITHS MODEL:

PHASE DIAGRAM IN THE TEMPERATURE
AND INTERACTION PARAMETERS PLANES∗

Mustafa Keski̇n, Bayram Devi̇ren, Osman Canko

Muharrem Kirak

Department of Physics, Erciyes University, 38039 Kayseri, Turkey

(Received December 27, 2006; revised version received February 27, 2007)

As a continuation of our previously published work, the dynamic phase
transitions are studied, within a mean-field approach, in the kinetic spin-3/2
Blume–Emery–Griffiths (BEG) model in the presence of a time varying (si-
nusoidal) magnetic field by using the Glauber-type stochastic dynamics.
The dynamic phase transitions (DPTs) are obtained and the phase dia-
grams are constructed in two different planes, namely reduced temperature
(T ) and biquadratic interaction (k), (T, k) plane where found seven fun-
damental types of phase diagrams for both positive and negative values
of crystal-field interaction (d) and magnetic field amplitude (h), and also
(T, d) plane in which obtained ten distinct topologies for different values
of k and h. Phase diagrams exhibit one or two dynamic tricritical points,
a dynamic double critical end point, and besides a disordered and two or-
dered phases, seven coexistence phase regions exist in which occurring of
all these strongly depend on the values of k, d and h.

PACS numbers: 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk

1. Introduction

In a preceding paper [1], we have presented a study within a mean-field
approach of the stationary states of the kinetic spin-3/2 Blume–Emery–
Griffiths (BEG) model under a time-dependent oscillating external magnetic
field. We use the Glauber-type stochastic dynamics [2] to describe the time
evolution of the system. We have investigated the time variations of the
average order parameters, namely magnetization and quadrupole moment.
We have also studied the behavior of the order parameters in a period, which
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are also called dynamic order parameters, as a function of the reduced tem-
perature. The DPT points are found by investigating the behavior of the
dynamic order parameters as a function of the reduced temperature. These
investigations are also checked and verified by calculating the Liapunov ex-
ponents. Finally, we have presented the phase diagrams in the reduced
temperature and magnetic field amplitude plane and found seventeen dis-
tinct topologies for several values of the interaction parameters. The phase
diagrams exhibit one or two dynamic tricritical points, a dynamic double
critical end point, and besides a disordered and two ordered phases, seven
coexistence phase regions exist in which occurring of all these strongly de-
pend on interaction parameters. On the other hand, one should study phase
diagrams of the model in the reduced temperature (T ) and biquadratic pair
interaction (k) plane, and in the reduced temperature (T ) and crystal-field
interaction (d) plane. Therefore, the aim of this paper is to calculate the
phase diagrams of the kinetic spin-3/2 BEG model in the presence of a time
varying (sinusoidal) magnetic field in the (T, k) and (T, d) planes by using
the Glauber-type stochastic dynamics.

It is worthwhile to mention that the physics of the equilibrium phase
transition is now rather well understood [3] within the framework of the
equilibrium statistical physics. However, the study of nonequilibrium critical
phenomena is not presently as well understood either theoretically or exper-
imentally as the equilibrium case due to the complexity. Therefore, further
efforts on these challenging time-dependent problems should promise to be
rewarding in future. Some interesting problems in nonequilibrium systems
are the nonequilibrium or the DPT and it is the one of the most important
dynamic responses of current interests. The DPT was first found in a study
within a mean-field approach of the stationary states of the kinetic spin-
1/2 Ising model under a time-dependent oscillating field [4, 5], by using the
Glauber-type stochastic dynamics [2], and it was followed by Monte Carlo
simulation, which allows the microscopic fluctuations, researches of the ki-
netic spin-1/2 Ising models [6], as well as further mean-field studies [7]. Tutu
and Fujiwara [8] developed the systematic method for getting the phase di-
agrams in DPTs, and constructed the general theory of DPTs near the tran-
sition point based on mean-field description, such as Landau’s general treat-
ment of the equilibrium phase transitions. The DPT has also been found in
a one-dimensional kinetic spin-1/2 Ising model with boundaries [9]. Recent
researches on the DPT are widely extended to more complex systems such
as vector-type order parameter systems, e.g., the Heisenberg-spin systems
[10], XY model [11], a Ziff–Gulari–Barshad model for CO oxidation with
CO desorption to periodic variation of the CO pressure [12] and a high-spin
Ising models such as the kinetic spin-1 [13] and spin-3/2 [14] Ising systems.
Moreover, experimental evidences for the DPT have been found in highly
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anisotropic (Ising-like) and ultrathin Co/Cu(001) ferromagnetic films [15]
and in ferroic systems (ferromagnets, ferroelectrics and ferroelastics) with
pinned domain walls [16].

The outline of the remaining part of this paper is as follows: In Section 2,
the spin-3/2 BEG model is presented and the derivation of the mean-field
(MF) dynamic equations is given by using the Glauber-type stochastic dy-
namics in the presence of a time-dependent oscillating external magnetic
field, briefly. In Section 3, the dynamic phase transition points are calcu-
lated, and the calculated phase diagrams are presented in the (T, k) and
(T, d) planes. Finally, a conclusion is given in Section 4.

2. The model and derivation of mean-field dynamic equations

Since the model and method, which are derivation of mean-field dynami-
cal equations of motion, were described extensively in [1]; therefore, we shall
only give a brief summary in here. The most general spin-3/2 Ising model
Hamiltonian with bilinear (J) and biquadratic (K) nearest-neighbor pair
interactions and a single-ion potential or crystal-field interaction (∆) is the
spin-3/2 Blume–Emery–Griffiths model and it has been paid much attention
for many years. The model is described by the following Hamiltonian:

H =−J
∑

〈ij〉
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)
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∑
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where the Si takes the value ±3/2 or ±1/2 at each i site of a lattice and
the summation index 〈ij〉 denotes a summation over all pairs of neighbor-
ing spins. J and K are, respectively, the nearest-neighbor bilinear and bi-
quadratic exchange constants, ∆ is the crystal field interaction or single-ion
anisotropy constant, and the last term, H, is a time-dependent external os-
cillating magnetic field. H is given by H(t) = H0 cos(ωt), H0 and ω = 2πν
are the amplitude and the angular frequency of the oscillating field, respec-
tively. The system is in contact with an isothermal heat bath at absolute
temperature.

The spin-3/2 BEG model is also three-order parameters system; these
are introduced as follows: (1) the average magnetization m ≡ 〈Si〉, which
is the excess of one orientation over the other orientation, also called the
dipole moment. (2) The quadrupole moment q, that is a linear function of
the average squared magnetization, i.e. q ≡ 〈S2

i 〉 − 5/4. This definition
ensures that q = 0 at infinite temperature. (3) The octupolar moment r,
which is an odd function of the average magnetization 〈Si〉 and defined as
r ≡ 5/3〈S3

i 〉 − 41/12〈Si〉. This definition also ensures that r = 0 at infinite
temperature. We should also mention that since the behavior of r is similar
to the behavior of s, we will not use r as many researchers have done.
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The system evolves according to a Glauber-type stochastic process at
a rate of 1/τ transitions per unit time. We define P (S1, S2, ..., SN ; t) as the
probability that the system has the S-spin configuration, S1, S2, ..., SN , at
time t. The time-dependence of this probability function is assumed to be
governed by the master equation which describes the interaction between
spins and heat bath, and can be written as

d

dt
P (S1,S2, ...,SN ;t)= −

∑

i

(

∑

Si 6=S′

i

Wi(Si → S′
i)
)
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+
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i
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′
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)
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where Wi(Si → S′
i), the probability per unit time that the ith spin changes

from the value Si to S′
i, and in this sense the Glauber model is stochastic.

Since the system is in contact with a heat bath at absolute temperature TA,
each spin can change from the value Si to S′

i with the probability per unit
time

Wi(Si → S′
i) = −

1

τ

exp(−β∆E(Si → S′
i))

∑

S′

i

exp(−β∆E(Si → S′
i))

, (3)

where β = 1/kBTA, kB is the Boltzmann factor,
∑

S′

i

is the sum over the
four possible values of S′

i, ±3/2, ±1/2 and ∆E is the change in the energy of
the system when the Si-spin changes that can be obtained by using Eq. (1).

By using the Glauber-type stochastic dynamics, we obtain the set of the
mean-field dynamical equations for the average order parameters [1]

Ω
d

dξ
m = −m +

3exp(a/T ) sinh(3b/2T )+exp(−a/T ) sinh(b/2T )

2 exp(a/T ) cosh(3b/2T )+2 exp(−a/T ) cosh(b/2T )
, (4)

Ω
dq

dξ
= −q +

exp(a/T ) cosh(3b/2T ) − exp(−a/T ) cosh(b/2T )

exp(a/T ) cosh(3b/2T ) + exp(−a/T ) cosh(b/2T )
, (5)

where m≡〈S〉 , q≡
〈

S2
〉

−5/4, a = d+kq, b=m+h cos ξ, ξ=wt, T =(βzJ)−1,
k = K/J , d = ∆/zJ , h = H0/zJ , Ω = τw. We fixed z = 4 and Ω = 2π.

3. Dynamic phase transition points and phase diagrams

Since determining of the nonequilibrium or dynamic phase transition
(DPT) points are discussed in paper I extensively, we shall only give a brief
summary in here. For this purpose, first we have to study the stationary
solutions of the dynamic equations, given in Eqs. (4) and (5), when the
parameters T, k, d and h are varied. The stationary solutions of Eqs. (4)
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and (5) will be a periodic function of ξ with period 2π. Moreover, they can
be one of three types according to whether they have or do not have the
property

m(ξ + π) = −m(ξ) , (6)

and q(ξ + π) = −q(ξ) . (7)

A solution that satisfies both Eqs. (6) and (7) is called a symmetric so-
lution and corresponds to a disordered (D) solution. In this solution, the
magnetization always oscillates around the zero value and is delayed with
respect to the external magnetic field. On the other hand, the quadrupolar
order parameter q(ξ) oscillates around a nonzero value for finite tempera-
tures and around a zero value for the infinite temperature due to the reason
that q = 0 at the infinite temperature by the definition of q. The second
type of solution does not satisfy Eqs. (6) and (7), and it is called a nonsym-
metric solution that corresponds to a ferromagnetic solution. In this case
the magnetization and quadrupolar order parameters do not follow the ex-
ternal magnetic field any more, but instead of oscillating around a zero value
they oscillate around a nonzero value, namely m(ξ) oscillates around either
±3/2 or ±1/2. Hence, if it oscillates around ±3/2, this nonsymmetric solu-
tion corresponds to the ferromagnetic−3/2 (F3/2) phase and if it oscillates
around ±1/2, this corresponds to the ferromagnetic−1/2 (F1/2) phase. The
third type of solution, which does satisfy Eq. (6) but does not satisfy Eq.
(7), corresponds to ferro-quadrupolar or simply quadrupolar (FQ) phase.
In this solution, m(ξ) oscillates around the zero value and is delayed with
respect to the external magnetic field and q(ξ) does not follow the exter-
nal magnetic field any more, but instead of oscillating around a zero value;
it oscillates around a nonzero value, namely either −1 or +1. Hence if it
oscillates around −1, this nonsymmetric solution corresponds to the ferro-
quadrupolar or simply quadrupolar (FQ) phase, and if it oscillates around
+1, this corresponds to the disordered phase (D). We have also seven coex-
istence solutions due to the combination of these solutions or phases. These
facts are seen explicitly by solving Eqs. (4) and (5) numerically. Eqs. (4)
and (5) are solved by using the numerical method of the Adams–Moulton
predictor corrector method for a given set of parameters and initial values.
Since the solutions and discussion of the results were given extensively in [1]
(see Fig. 1 of Ref. [1]), we will not present the figure in this work. These facts
implicitly and Fig. 1 of [1] explicitly show that we have ten phases in the
system, namely D,F3/2, F1/2, F3/2 +F1/2, F3/2 +D,F3/2 +F1/2 +FQ,F3/2 +
FQ,F1/2 + FQ,F3/2 + FQ + D and FQ + D.

In order to see the dynamic phase boundaries among these ten phases,
we have to calculate DPT points and then we can present phase diagrams
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Fig. 1. Phase diagrams of the spin-3/2 BEG model in the (T, k) plane for d ≥ 0.0

(d = 0.025) and several values of h. The disordered (D), ferromagnetic-3/2 (F3/2),
and five different coexistence regions, namely the F3/2 + F1/2, F3/2 + FQ, F3/2 +

F3/2 + FQ, F3/2 + D and FQ + D, are found. Dashed and solid lines represent the
first- and second-order phase transitions, respectively, and the dynamic tricritical
points are indicated with filled circles. (a) h = 0.125, (b) h = 0.35, (c) h = 0.375,
(d) h = 0.625, (e) h = 0.875, (f) h = 1.25, and (g) h = 2.0.
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of the system. DPT points will be obtained by investigating the behavior of
the average order parameters in a period or the dynamic order parameters
as a function of the reduced temperature. The dynamic order parameters,
namely the dynamic magnetization (M) and the dynamic quadruple moment
(Q), are defined as

M =
1

2π

2π
∫

0

m(ξ)dξ and Q =
1

2π

2π
∫

0

q(ξ) dξ . (8)

The behavior of M and Q as a function of the reduced temperature for sev-
eral values of k, d and h are obtained by combining the numerical methods
of Adams–Moulton predictor corrector with the Romberg integration. We
will obtain the DPT points and also the type of the phase transition from
the behavior of M and Q. For example, if M decreases to zero continuously
as the reduced temperature increases, a second-order phase transition oc-
curs at TC. On the other hand, Q decreases until TC, as the temperature
increases, and it makes a cusp at TC and then decreases to zero as the tem-
perature increases and it becomes zero at infinite temperature. If M and Q
decrease to zero discontinuously, a first-order phase transition occurs, at Tt.
Since we gave a few interesting explanatory examples to illustrate the calcu-
lation of the DPT and the dynamic phase boundaries among ten phases in
Fig. 2 of [1], we will not present any behavior of M and Q in this work. We
should also mention that the Liapunov exponents were calculated to verify
the stability of solutions and the DPT points in [1], see Fig. 3 there.

We can now present the phase diagrams of the system in the reduced
temperature and interaction parameters plane. The calculated phase dia-
grams are presented in Figs. 1–3 for various values of k, d and h. In these
phase diagrams, the solid and dashed lines represent the second- and the
first-order phase transition lines, respectively, and the dynamic tricritical
point is denoted by a filled circle and B represents the dynamic double
critical end point.

Fig. 1 shows the phase diagrams in the (T, k) plane for the positive
values of d, i.e., d = 0.025 and several values of h and the following seven
fundamental types of phase diagrams are found. (i) Fig. 1(a) represents
the phase diagram in the (T, k) plane for h = 0.125. In this case, besides
two dynamic tricritical points, one disordered (D), and one ordered (F3/2)
and four coexistence regions, namely F3/2 + F1/2, F3/2 + FQ, F3/2 + D and
FQ+D, exist in the phase diagram. The dynamic phase boundaries between
the D and F3/2 phases; between the F3/2 + F1/2 and F3/2 + FQ phases;
between the F3/2 +FQ and FQ+D phases are second-order lines. All other
dynamic phase boundaries among the other phases are first-order lines. (ii)
This type of the phase diagram is presented for h = 0.35, seen in Fig. 1(b).
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Fig. 2. Phase diagrams of the spin-3/2 BEG model in the (T, k) plane for
several negative values of d, and h. The disordered (D), ferromagnetic-3/2
(F3/2), ferromagnetic-1/2 (F1/2) and four different coexistence regions, namely the
F3/2 + F1/2, F3/2 + FQ, F1/2 + FQ and F3/2 + F1/2 + FQ, are found. Dashed
and solid lines represent the first- and second-order phase transitions, respectively.
(a) d = −1.0, h = 0.125, (b) d = −1.0, h = 0.35, (c) d = −0.5, h = 0.125, (d)
d = −1.0, h = 0.375, (e) d = −0.5, h = 0.375, (f) d = −0.5, h = 1.25, and (g)
d = −1.0, h = 1.25.
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Fig. 3. Phase diagrams of the spin-3/2 BEG model in the (T, d) plane for several
values of k and h. The disordered (D), ferromagnetic-3/2 (F3/2), ferromagnetic-1/2
(F1/2) and seven different coexistence regions, namely the F3/2 + F1/2, F3/2 + D,
F3/2 +F1/2 + FQ, F3/2 + FQ, F1/2 +FQ, F3/2 +FQ +D and FQ+ D, are found.
Dashed and solid lines represent the first- and second-order phase transitions, re-
spectively. The dynamic tricritical points are indicated with filled circles, and B
denotes the dynamic double critical end point. (a) k = 0.5, h = 0.125, (b) k = 0.5,
h = 0.35, (c) k = 0.5, h = 0.375, (d) k = 0.1, h = 0.375, (e) k = 0.5, h = 0.75, (f)
k = 0.1, h = 1.3, (g) k = 0.1, h = 1.5, (h) k = 0.5, h = 1.25, (i) k = 1.0, h = 1.25,
and (j) k = 1.0, h = 2.0.

It is similar to Fig. 1(a), the only difference is that in Fig. 1 (a) very low
values of T , the F3/2 +F1/2 +FQ phase or coexistence region also exist. The
dynamic phase boundaries between this F3/2 + F1/2 + FQ and F3/2 + F1/2

phase, and between the F3/2 + F1/2 + FQ and F3/2 phases are first-order
lines. (iii) The phase diagram is illustrated in Fig. 1(c) for h = 0.375, and
it is similar to the case (ii), except that the F3/2 + F1/2 phase disappears.
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(iv) For h = 0.625, the phase diagram is presented in Fig. 1(d). While this
phase diagram has the same phase topology as the diagram in Fig. 1(c), it
only differs from Fig. 1(c) in which the F3/2+F1/2+FQ phase does not occur
any more and the F3/2 + D phase or coexistence region becomes very small.
(v) For h = 0.875, the calculated phase diagram is illustrated in Fig. 1(e).
The system exhibits the D and F3/2 phases, and the F3/2 +FQ and FQ+D
phases. The dynamic phase boundaries between the D and F3/2 phases, and
between the F3/2 + FQ and FQ + D phases are second-order lines. On the
other hand, the boundaries between the F3/2 and F3/2 + FQ phases, and
between the D and FQ+D phases are first-order lines. Moreover, the system
does not exhibit any dynamic tricritical point. (vi) For h = 1.250, the phase
diagram is seen in Fig. 1(f). In this case, the system exhibits the D phase
and the F3/2 + FQ + D, F3/2 + D, F3/2 + FQ, FQ + D coexistence regions.
The dynamic phase boundaries among these phases are all first-order lines.
(vii) This type of the phase diagram is presented for h = 2.0, seen in Fig. 1(g)
and only the D and FQ + D phases exist. The dynamic phase boundary
between these two phases is a first-order phase line. Moreover, at zero and
very low values of T , the D phase occurs due to the high values of h.

Fig. 2 displays the phase diagrams in the (T, k) plane for the several
negative values of d and several values of h, and the following seven funda-
mental types of phase diagrams are found. (i) Fig. 2(a) represents the phase
diagram in the (T, k) plane for d = −1.0 and h = 0.125. In this phase
diagram, the D, F1/2, F3/2 +F1/2 and F3/2 +FQ phases exist. The dynamic
phase boundaries between the F1/2 and D phases; between the F3/2 + F1/2

and F3/2 +FQ phases are second-order phase lines, but boundaries between
the F1/2 and F3/2 + F1/2 phases; between the D and F3/2 + FQ phases
are first-order lines. (ii) This type of the phase diagram is presented for
d = −1.0 and h = 0.35, seen in Fig. 2(b) and this phase diagram is similar
to Fig. 2(a), except the following differences: (1) The F1/2 +FQ phase exists
for low values of T and k. (2) The F3/2 + F1/2 + FQ phase occurs for low
values of T and high values of k. The dynamic phase boundaries between
the F1/2 and D phases, and between the F3/2 + F1/2 and F3/2 + FQ phases
are second-order lines. All the other boundaries among the other phases
are first-order lines. (iii) For d = −0.5 and h = 0.125, this type of phase
diagram is presented in Fig. 2(c) and it is similar to the case (ii), except
that the F1/2 and F3/2 + F1/2 phases disappear. Therefore, the dynamic
phase boundaries among all the phases are first-order lines. (iv) The phase
diagram is obtained for d = −1.0 and h = 0.375, illustrated in Fig. 2(d).
While this phase diagram has the same phase topology as the diagram in
Fig. 2(a), it only differs from Fig. 2(a) in which the F1/2 phase does not
exist for very low values of T and k; but this phase occurs in certain range
of T and for the low values of k. (v) We performed the phase diagram for
d = −0.5 and h = 0.375, shown in Fig. 2(e). This phase diagram is similar
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to Fig. 2(c), except that the F1/2 + FQ phase does not exist at zero and at
very low values of T , and it occurs in certain range of T values; hence the
F3/2 + F1/2 + FQ phase exists at zero and at very low values of T . (vi) In
this case, the phase diagram is constructed for d = −0.5 and h = 1.25, seen
in Fig. 2(f). In this phase diagram, F1/2 phase exists for very low values of
T and k, and as the values of k increase, the F1/2 + FQ occurs, then the D
phase, and finally the F3/2 +FQ phase appear, seen in Fig. 2(f). The phase
boundaries among all these phases are first-order lines. (vii) The phase di-
agram is constructed for d = −1.0 and h = 1.25 and presented in Fig. 2(g)
and only the D and F3/2 + FQ phases exist in which the dynamic phase
boundary between these two phases is a first-order phase line. Moreover,
the D phase occurs at zero and very low values of T due to the high values
of h.

Finally, Fig. 3 shows the phase diagrams in (T, d) plane for several values
of k and h and the following ten fundamental types of phase diagrams are
found. (i) We performed the phase diagram for k = 0.5 and h = 0.125,
seen in Fig. 3(a). The phase diagram displays the D, F3/2, F1/2 phases and
the F3/2 + F1/2, F3/2 + FQ coexistence regions or phases. The system also
exhibits a dynamic tricritical point. The dynamic phase boundaries between
the D and F3/2 phases, between the D and F1/2 phases, and also between
the F3/2+F1/2 and F3/2+FQ phases are second-order phase transition lines.
The other phase boundaries are all first-order lines. (ii) The phase diagram
is constructed for k = 0.5 and h = 0.35, and this phase diagram is similar
to Fig. 3(a), except three more coexistence phases, namely the F1/2 + FQ,
F3/2 +F1/2 +FQ and F3/2 +FQ, which occur for very low values of T , seen
in Fig. 3(b). The dynamic boundaries among the coexistence phases are
all first-order lines, except the boundaries between the D and F3/2 phases,
between the D and F1/2 phases, and between the F3/2 +F1/2 and F3/2 +FQ
phases which are second-order lines. (iii) We have presented the phase
diagram for k = 0.5 and h = 0.375, seen in Fig. 3(c). While this phase
diagram has the same phase topology as the diagram in Fig. 3(b), it only
differs from Fig. 3(b) in which the F1/2, F3/2+F1/2 and one of the F3/2+FQ
phases do not occur any more, hence the second-order phase line that occurs
at low values of T , now disappears. The dynamic boundaries among the
other phases are first-order lines, except the boundary between the D and
F3/2 phases, this boundary is a second-order line. (iv) The phase diagram
is illustrated for k = 0.1 and h = 0.375, seen in Fig. 3(d), and it is similar
to the case (iii), except that the F1/2 + FQ and F3/2 + F1/2 + FQ phases
become smaller; hence the F3/2 + FQ phase exists for low values of T and
certain range of d values. (v) We performed the phase diagram for k = 0.5
and h = 0.75, shown in Fig. 3(e). This phase diagram is similar to Fig. 3(d),
except that the F1/2 + FQ and F3/2 + F1/2 + FQ phases do not exist any
more. Moreover, Fig. 3(a)–(e) exhibit a dynamic tricritical point. (vi) The
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phase diagram is for k = 0.1 and h = 1.3, illustrated in Fig. 3(f). This is a
more interesting phase diagram in which the system exhibits two dynamic
tricritical points besides the D, F1/2, F1/2 + FQ and F3/2 + D phases. The
F3/2 + D phase occurs for high values of d and two F1/2 + FQ phases exist
for low values of d. The dynamic boundary between the D and F1/2 phases
is a second-order, and other boundaries among the other phases are all first-
order lines. (vii) In this case, the phase diagram is constructed for k = 0.1
and h = 1.5, seen in Fig. 3(g). The phase diagram is similar to the Fig. 3(f),
except following two differences: (1) the F3/2 + D phase disappears; (2) the
F1/2 +D phases appear instead of the F1/2 +FQ phases. Hence, the system
exhibits two dynamic tricritical points and besides the D and F1/2 phases,
only two F1/2 + D coexistence regions exist. (viii) In this case, the phase
diagram is presented for k = 0.5 and h = 1.25, shown in Fig. 3(h). The
system exhibits the D, F3/2 + D, F3/2 + FQ and F3/2 + FQ + D phases.
The dynamic phase boundaries among these phases are all first-order lines.
(ix) The phase diagram is calculated for k = 1.0 and h = 1.25, illustrated in
Fig. 3(i). The phase diagram is similar to Fig. 3(h) but following differences
have been found: (1) The FQ + D coexistence region occurs for very low
values of T and d. (2) The F3/2 +FQ+D phase disappears. (3) The system
exhibits a dynamic double critical (B) end point where two phases coexist,
namely, the FQ + D and D phases. (x) We performed the phase diagram
for k = 1.0 and h = 2.0, seen in Fig. 3(j). In the phase diagram, the D,
FQ and FQ + D phases exist and the boundaries among these phases are
all first-order lines. The system also exhibits a dynamic double critical end
point.

4. Conclusion

We present a study, within a mean-field approach, the kinetics spin-3/2
BEG model under a time-dependent oscillating external magnetic field. The
kinetics is described by the Glauber-type stochastic dynamics. The dynamic
phase transition (DPT) points are obtained by investigating the behavior of
the dynamic magnetization and dynamic quadruple moment as a function
of the reduced temperature. We found the behavior of the system strongly
depends on the values of h and the interactions parameters, namely, d and k.
The phase diagrams are constructed in the (T, k) and (T, d) planes and
disordered, two ordered and seven coexistence phase regions are found. In
the (T, k) plane, we found fourteen fundamental types of phase diagrams for
different values of d in which seven is for positive values of d and seven is for
negative values of d. On the other hand, we obtained ten different topologies
of phase diagram in the (T, d) plane for different values of k and h. The phase
diagrams exhibit one or two dynamic tricritical points and also a dynamic
double critical end point which occuring of these depend on k, d and h
values. The stability of the solutions and the DPT points are checked by
calculating the Liapunov exponents.
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