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We present a mechanism for controlling directed transport of particles
in inertia ratchets. We study a parameter regime where two attractors —
each transporting particles in different directions co-exist in phase space;
and show that a proper control of direction of transport can be achieved
by using adaptive backstepping based synchronisation technique.
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1. Introduction

Transport phenomena and in particular directed transport are at the
heart of many problems in physics, chemistry and biology. Renewed in-
terest in the field of directed transport stems from the theme of ratchet
physics where unbiased, noise-induced transport emerges away from ther-
mal equilibrium as a result of the action of Brownian motors [1–3]. Simi-
larly, deterministic directed transport can result in time-dependent driven
systems that exhibit a symmetry breaking of either spatial (for instance,
the periodic ratchet potential) or of dynamic origin. Research activities in
this area is partly motivated by the challenge to model and control some
biological processes at both micro and macro scales as found in transport
of ion channels and muscle operations respectively [4]. Another source of
motivation is the potential for technological applications aimed at devising
mechanisms for sorting, separating, pumping and controlling tiny particles
at nanoscales and micro scales (see Refs. [2,5] and references therein). Out-
standing experimental realization of some of these devices have been carried
out. Specifically, the control of motion of vortices in superconductors [6],
particles in asymmetric silicon pores [7], charged particles through artificial
pores [8], among others, have been reported recently.
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Several attempts have been made to understand the generation of uni-
directional motion from nonequilibrium fluctuations. The vast majority of
the models described in the literature considers the overdamped cases in
which the effect of the inertial term is neglected [1, 4]. Recently, ratchet
models wherein the inertial term is considered have been extensively inves-
tigated since it was first studied by Jung et al. [9]. These ratchets possess,
in general, a classical chaotic dynamics that modifies significantly the trans-
port properties [9, 10]. For instance, current reversal and multiple current
reversals have been attributed to changes in the bifurcation structure. In
addition, the implication of chaotic dynamics in deterministic ratchets have
been recently addressed in the quantum domain, together with the possible
connection with quantum chaos [11].

In a different context, Savel’ev et al. [12] examined the transport proper-
ties of binary mixture of interacting particles and showed that attracting or
repelling interaction among identical particles can result in the amplification
(inversion) of their net current. This is potentially useful for enhancing and
regulating transport (e.g. through synthetic ion channels) and separation of
repelling particles. Interaction among identical and non-identical particles
can lead to synchronised dynamics when a threshold is reached. Synchroni-
sation of two coupled chaotic ratchets have been recently investigated [13]
and it is believed that the synchronisation of coupled ratchets could provide
some information regarding the transport properties of inertia ratchets [13].
Synchronisation phenomena in coupled or driven nonlinear oscillator are in
general of fundamental importance in nonlinear dynamics and have been ex-
tensively investigated both theoretically and experimentally since the semi-
nal work of Pecora and Carroll in 1990 [14]. Chaos synchronisation is closely
related to the observer problem in control theory [15]. The problem may
be treated as the design of control law for full chaotic observer (the slave
system) using the known information of the plant (the master system) so as
to ensure that the controlled receiver synchronises with the plant. Hence,
the slave chaotic system traces the dynamics of the master in the course of
time.

Various techniques have been proposed for achieving stable synchroni-
sation between identical and non-identical systems. Notable among these
methods, the active control scheme [16] has received a considerable atten-
tion in the last few years due to its simplicity and robustness. Applications
to various systems abound, some of which includes the Lorenz, Chen and Lü
system [17], geophysical system [18], spatiotemporal dynamical system [19],
the so-called unified chaotic attractor [20], electronic circuits, which model a
third-order “jerk” equation [21], the Bloch equation [22]; and most recently
in RCL-shunted Josephson junction [23] and the Lorenz–Stenflo equations
modelling acoustic gravity waves [24]. Another method, the recursive back-
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stepping design which forms the building block for adaptive control of chaotic
systems [25, 26], was recently extended to the synchronisation of identical
chaotic systems by Tan et al. [27], in which the Lorenz system, Chua’s
circuit and Duffing oscillator were used as typical models to illustrate the
efficiency of the technique. Backstepping design has been employed recently
to control hydraulic servo systems [28], permanent magnet reluctance ma-
chine [29], Duffing oscillators [30] and a third-order phase locked loop [31].
The method is a recursive procedure that skillfully interlaces the choice of
a Lyapunov function with the control. Indeed, backstepping control can
guarantee global stability, tracking and transient performance for a broad
class of strict-feedback systems [25, 26].

In a recent letter, we demonstrated the synchronisation of two identical
chaotic ratchets and explored the property of active control to achieve the
control of directed transport in inertia ratchets [32]. With this work, we
extend our previous studies with the object of centering on the possibility
of controlling at will, the directed transport arising from difference in initial
conditions of the inertia ratchets by using another technique, the adaptive
backstepping control proposed in Ref. [27]. In the next section, we describe
our model and present the backstepping design for chaos synchronisation in
Section 3. Section 4 deals with numerical simulation results and Section 5
concludes the paper.

2. The chaotic ratchet model

Let us consider the one-dimensional problem of a particle driven by a pe-
riodic time-dependent external force under the influence of an asymmetric
potential of the ratchet type [9,10,13,32]. The time average of the external
force is zero. In the absence of stochastic noise, the dynamics is exclusively
deterministic. The dimensionless equation of motion for a particle of unit
mass moving in the ratchet potential V (x) is given by (see Ref. [10] for
instance):

ẍ + bẋ +
dV (x)

dx
= a cos(ωDt) , (1)

where time t has been normalised in the unit of ω−1

0
, ω0 being the frequency

of the linear motion around the minima of V (x); b is the damping param-
eter, while a and ωD are the amplitude and frequency of the driving force
respectively; V (x) is the dimensionless potential given by

V (x) = C −
1

4π2δ
[sin 2π(x − x0) + 0.25 sin 4π(x − x0)] . (2)

The constant C ≃ 0.0173 and δ ≃ 1.600. The potential is shifted by a value
x0 in order that the minimum of V (x) is located at the origin (see Fig. 1). We
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note that apart from its periodicity, the ratchet potential (2) has an infinite
number of potential wells; so that the orbits transports particles from one
well to another. Thus, in the Poincaré section representation, one can utilise
this periodicity to collapse the dynamics to a unit cell within a phase space
region for which −0.5 ≤ x ≤ 0.5.
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Fig. 1. The dimensionless rachet potential.

The extended phase space in which the dynamics is taking place is
three-dimensional, since we are dealing with an inhomogeneous differen-
tial equation with an explicit time dependence. Eq. (1) can be expressed
in strict-feedback form and then solved numerically using the fourth-order
Runge–Kutta algorithm. Since the equation is nonlinear, its solution there-
fore allows the possibility of periodic and chaotic orbits. System (1) exhibits
rich varieties of dynamical behaviour including the co-existence of attractors.
Here, we are particularly interested in the parameter regime where two at-
tractors co-exist in phase space.

We fix b = 0.1, ω = 0.67 and a = 0.156 throughout the paper and
show (Fig. 2) in a Poincaré section, two co-existing attractors as reported in
Ref. [33]. One is a chaotic attractor and generates positive current while the
other is a periodic attractor and generate negative current. This scenario
can be considered as a mixture of non-identical particles studied in [12].
Of course the mixing properties is revealed by the complex way the basins
associated with these attractors are intermingled with fractal basin bound-
aries (see Fig. 5, Ref. [33]). It is noteworthy that co-existing attractors (the
so-called “battle of attractors”) can be observed in ratchet models subjected
to thermal noise, when the driving amplitude is increased to some critical
value [34]. It has been reported by Macura et al. [34], that the particles in
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this state burn energy for both barrier crossing and intra-well oscillator —
a behaviour reflected in an enormous enhancement of the effective diffusion
(see Ref. [34] and references therein). The goal here is to design a con-
trol force using adaptive backstepping technique, that will drive the chaotic
attractor to transport particles in a non-chaotic manner; hence generating
negative current.
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Fig. 2. Co-existing attractors: a chaotic attractor and a periodic attractor for

b = 0.1, ω = 0.67 and a = 0.156.

3. Adaptive backstepping design

The goal of this section is to design a control force using adaptive back-
stepping technique, that will synchronise two non-identical ratchet dynamics
evolving from different initial states, such that in their long time run, the
two systems are identical in dynamics. To treat this problem, let the drive
ratchet be given by

ẋ1 = y1,

ẏ1 = −by1 + a cos(ω1t) + f(x1) , (3)

and the response ratchet be given by

ẋ2 = y2,

ẏ2 = −by2 + a cos(ω2t) + f(x2) + u , (4)

where

f(x1) =
1

4πδ
[2 cos 2π(x1 − x0) + cos 4π(x1 − x0)] , (5)
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f(x2) =
1

4πδ
[2 cos 2π(x2 − x0) + cos 4π(x2 − x0)] , (6)

and u is the control that is required to drive system (4) (the response) to
a synchronised state with system (3) — the driver. To achieve this goal, we
define the error state between (3) and (4) as

ex = x2 − x1 and ey = y2 − y1 . (7)

Subtracting Eq. (3) from Eq. (4) and using definition (7), we have the fol-
lowing error dynamics equation for the drive-response system:

ėx = ey

ėy = −bey + f(x2) − f(x1) + a[cos(ω2t) − cos(ω1t)] + u . (8)

In the absence of u, Eq. (8) would have an equilibrium at (0, 0). If a u can be
chosen such that the equilibrium (0, 0) remains unchanged, then the problem
of synchronisation between the drive-response system can be transformed to
that of realizing asymptotic stabilisation of system (8). Thus, the goal is to
find a control law u such that system (8) is stabilised at the origin.

Considering the stability of system (9):

ėx = ey , (9)

and regarding ey as a virtual control. An estimate stabilising function α1(ex)
can be designed for the virtual control ey. Choose a Lyapunov function

V1(ex) =
1

2
e2

x . (10)

The derivative of V1(ex) is

V̇1(ex) = exėx . (11)

For V1(ex) to be negative definite, then ėx = −ex. That is

V̇1(ex) = −e2

x < 0 . (12)

It follows that α1(ex) = −ex. Now, let the error state ez be defined by

ez = ey − α1(ex) . (13)

Considering the (ex, ez) subspace given by

ėx = ez − ex ,

ėz = (1 − b)ez + (b − 1)ex + f(x2) − f(x1)

+a[cos(ω2t) − cos(ω1t)] + u , (14)
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and the Lyapunov function

V2(ex, ez) = V1(ex) +
1

2
e2

z . (15)

The derivative of Eq. (15) is

V̇2(ex, ez) = −e2

x + ez[(1 − b)ez + (b − 1)ex

+f(x2) − f(x1) + a(cos(ω2t) − cos(ω1t)) + u] . (16)

If we choose

u = −ez − (1 − b)ez − (b − 1)ex

−f(x2) + f(x1) − a(cos(ω2t) − cos(ω1t)) , (17)

then, V̇2(ex, ez) = −e2
x−e2

z < 0 is negative definite and according to LaSalle–
Yoshizawa theorem [25, 26], the error dynamics ex, ez will converge to zero
as t → ∞, while the equilibrium (0, 0) remains global asymptotically stable.
Thus, the synchronisation problem between the drive-response ratchets is
solved.

4. Numerical results

In the numerical simulations that follows, we set the system parameters
as in Fig. 2 and make the following choice of initial conditions: x1(0) =
0.45, y1(0) = −0.12, x2(0) = −0.1 and y2(0) = 0.25. With these set of initial
conditions, we display the trajectories associated with the chaotic and the
periodic attractors in Fig. 3 when the control is switched off. In Fig. 3, the
driver system corresponds to the periodic attractor transporting particles in
the negative direction while the response system is the chaotic attractor that
transport particle in the positive direction. The reader may wish to refer to
Fig. 4 in Ref. [33] where the motion of the attractors is in the uncontrolled
state.

When the control u is switched on, the response ratchet is driven to
a synchronised state with the drive ratchet. In this synchronised state, the
error dynamics [ex, ey] → 0 as t → ∞ and the two systems assume identical
dynamics. Considering Fig. 4, where we have plotted the trajectories of the
two systems when the control is switched on at t = 50, we find that the
direction of transport for the chaotic attractor has been reversed to follow
the direction of transport of the periodic attractor, both now generating
negative current.
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Fig. 3. Trajectories of the two chaotic attractors shown in Fig. 2: Positive cur-

rent (dashed line) generated by the chaotic attractor; negative current (solid line)

generated by the periodic attractor. Here control has been switched off.
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Fig. 4. Synchronisation dynamics of the master-slave ratchets for initial conditions:

x1(0) = 0.43, y1(0) = −0.12, x2(0) = −0.10, y2(0) = 0.25, and b = 0.1, ωD = 0.67.

Control of particle transport to the negative direction in a non-chaotic fashion is

achieved when control is switched on at t = 50. Inset (bottom-left) shows the

transient behaviour of the error dynamics (ex versus t) when control is activated

at t = 0; while the inset (top-right) is the zoom of the initial transient for X1 and

x2 when control is activated t = 0.
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5. Concluding remarks

Conclusively, we have applied the recursive backstepping synchronisation
scheme to a more concrete physical system of interest in non-equilibrium
physics and have shown that the method can be used to control directed
transports of particle arising from the co-existence of two non-identical at-
tractors in phase space. The method is simple, singularity free, gives flexibil-
ity to construct a control law and the closed-loop system is globally stable.
Unlike the method of active control that was employed in our earlier study,
the present method has some advantages. Although the active control is
more easier to design, there are however, two controller functions required
for the design, while only one controller is needed for the backstepping.
Thus, the controllers obtained using active control method are more com-
plex for practical implementation. Comparing the equation of motion for the
inertia ratchet and the control equations for active control (see Eqs. (7), (9)
and (10)) in Ref. [32], it is obvious that the controller is more complex than
the system to be controlled. Moreover the flexibility in the choice of control
laws for recursive backstepping design gives room for further improvement
in its performance.

The problem of controller complexity is a very crucial issue in the prac-
tical implementation of control techniques [35]. Two fundamental issues in
this direction are (i) the cost implication and the density requirement for de-
signing controllers and (ii) the need to make the complexity of the controller
to be, at least comparable to, or less than, the device being controlled, if
the controlling technique is desired to achieve a useful end far beyond scien-
tific curiosity. Hence, the entire concept of control mechanism would become
untenable if a simple chaotic system requires a massively complex controller.
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