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NUMERICAL EVALUATION OF SOME PARAMETERS
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Using the Mathematica program we calculate numerically the difference
of the diagonal matrix elements of the time dependent effective Hamilto-
nian for the neutral K meson complex. We consider the exactly solvable
neutral K meson model based on the one-pole approximation for the mass
density. The so-called Khalfin’s Theorem is numerically examined. Some
characteristic parameters for this system are also calculated. The results
of all calculations are presented in the graphical form. The calculations are
made assuming the total system is CPT-invariant and CP-noninvariant.
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1. Introduction

The neutral kaon system is probably one of the most interesting com-
plexes of elementary particles. Using this system it was found in 1964 that
the CP symmetry is violated [1]. The description of CP violation effects
in this system is based on the approximation proposed by Lee, Oehme and
Yang (LOY) in [2]. This theory was then developed and intensively studied
by Lee (see [3]) and by many other authors (see e.g. [4]). Within the LOY
approach, a non–hermitian Hamiltonian H‖ is used to study the properties
of the particle–antiparticle unstable system [2–5]

H‖ ≡M −
i

2
Γ , (1)

where
M = M+ , Γ = Γ

+ (2)

are (2 × 2) matrices acting in H‖, where H‖ is a two–dimensional subspace

of the total Hilbert space of states H, spanned by the state vectors of K0,
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K̄0 mesons. The M -matrix is called the mass matrix and Γ is the decay
matrix. LOY derived their approximate effective Hamiltonian H‖ ≡ HLOY

by adapting the one-dimensional Weisskopf–Wigner (WW) method to the
two-dimensional case corresponding to the neutral kaon system. Almost all
properties of this system can be described by solving the Schrödinger-like
equation

i
∂

∂t
|ψ; t〉‖ = H‖|ψ; t〉‖, (t ≥ t0 > −∞) , (3)

where we have used ~ = c = 1, and |ψ; t〉‖ ∈ H‖.
Within the LOY theory the physical states of neutral kaons are super-

positions of |K0〉 and |K̄0〉. They are the eigenvectors of HLOY,

|KS〉 = p|K0〉+ q|K̄0〉, |KL〉 = p|K0〉 − q|K̄0〉, (4)

H‖|KS(L)〉 = µS(L)|KS(L)〉, (5)

and correspond to short-living (the vector |KS〉) and long-living (the vector
|KL〉) states of neutral kaons. We will use the following notations further
on in this paper: |K0〉 ≡ |1〉, |K̄0〉 ≡ |2〉.

One of standard results of the LOY approach is the following: In a CPT
invariant system, i.e. when

ΘHΘ−1 = H, (6)

(where Θ = CPT, and H is the total self-adjoint Hamiltonian for the system
containing neutral koans considered), there is

hLOY
11 = hLOY

22 (7)

and
MLOY

11 = MLOY
22 , (8)

where: MLOY
jj = Re(hLOY

jj ) and Re(z) denotes the real part of a complex

number z (Im(z) is the imaginary part of z), and hLOY
jj = 〈j|HLOY|j〉,

(j = 1, 2). Another important prediction of the LOY theory is that the
ratio

r(t)
def
=

p 2

q 2
≡
A12(t)

A21(t)
= const. and |r(t)| = |

p 2

q 2
| 6= 1 , (9)

when CP symmetry is violated, [CP,H] 6= 0, [3–8]. Here

Ajk(t) = 〈j|U‖(t)|k〉 ≡ 〈j|e
−itH|| |k〉 , (j, k = 1, 2) , (10)

and U‖(t) is the evolution operator for the subspace H‖.
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The important result indicating some limitations of the LOY approach
was obtained by Khalfin [6–12]. Khalfin found that in the exact theory there
must be

if r(t) =
A12(t)

A21(t)
= const. , then |r(t)| = 1 , (11)

where
Ajk(t) = 〈j|e−itH |k〉 , (j, k = 1, 2) . (12)

Result (11) is known in the literature as “Khalfin’s Theorem”. Using this
result Khalfin hypothesized that beyond the LOY approximation one should
expect new CP-violation effects [7, 8] and he tried to obtain some model
estimations of the possible magnitude of these effects. He found that the
order of these effects should be 10−3 (see [8]). He obtained his estimation
using the spectral language for the description of KS,KL and K0, K̄0, by
introducing a hermitian Hamiltonian, H, with a continuous spectrum of
decay products labeled by α, β, etc.,

H|φα(m)〉 = m |φα(m)〉 , 〈φβ(m′)|φα(m)〉 = δαβδ(m
′ −m) . (13)

Here H is the above mentioned total Hamiltonian for the system. H includes
all interactions and has absolutely continuous spectrum. We have

|KS〉 =

∫

Spec (H)

dm
∑

α

ωS,α(m)|φα(m)〉 , (14)

|KL〉 =

∫

Spec (H)

dm
∑

β

ωL,α(m)|φβ(m)〉 , (15)

and

|j〉 =

∫

Spec (H)

dm
∑

α

ωj,α(m)|φα(m)〉 , (16)

where j = 1, 2. Thus, the exact Ajk(t) can be written as the Fourier trans-
form of the density ρjk(m), (j, k = 1, 2),

Ajk(t) =

+∞
∫

−∞

dm e−imtρjk(m) , (17)

where
ρjk(m) =

∑

α

ω∗
j,α(m)ωk,α(m) . (18)
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The minimal mathematical requirement for ρjk(m) is the following:
∫ +∞
−∞ dm |ρjk(m)| < ∞. Other requirements for ρjk(m) are determined by

basic physical properties of the system. The main property is that the energy
(i.e. the spectrum of H) should be bounded from below, Spec(H) = [mg, ∞)
and mg > −∞.

Starting from densities ρjk(m) one can calculate Ajk(t). In order to find
these densities from relation (18) one should know the expansion coefficients
ωj,α(m). Using physical states |KS〉, |KL〉 and relations (4) they can be
expressed in terms of the expansion coefficients ωS,α(m), ωS,α(m). Thus,
assuming the form of coefficients ωS,α(m), ωS,α(m) defining physical states
of neutral kaons one can compute all Ajk(t), (j, k = 1, 2).

The model considered by Khalfin is based on the assumption that (see
formula (35) in [8])

ωS,β(m) =

√

ΓS

2π

ξS,β(m)

|ξS,β(mS − i
ΓS
2 )|

aS,β(KS → β)

m−mS + iΓS
2

, (19)

ωL,β(m) =

√

ΓL

2π

ξL,β(m)

|ξS,β(mL − i
ΓL
2 )|

aL,β(KL → β)

m−mL + iΓL
2

, (20)

where aS,β and aL,β are the decay (transition) amplitudes and ξS(L),β(m)
are, in general, some nonsingular “preparation functions”. Khalfin found his
above mentioned estimation choosing, for simplicity, the trivial form of the
“preparation functions”, ξS(L),β(m) = 1.

The discussion about the validity of the Khalfin’s estimation of his new
CP violation effect can be found in the literature (see e.g. [6,12]). Our atten-
tion will be concentrated on the attempt to verify the size of the Khalfin’s es-
timation performed in [12]. The calculation performed in [12] uses Khalfin’s
assumption that ξS(L),β(m) = 1, strictly speaking, they use the assumption
that in (19), (20) there is

ξS(L),β(m)

|ξS(L),β(mS(L) − i
ΓS(L)

2 )|
≡ g(m−mg) = [g(m−mg)]

2

def
=

{

1 if m ≥ mg ,
0 if m < mg .

(21)

Within this assumption one obtains, for example, that

ASS(t)
def
= 〈KS|e

−itH |KS〉 =

+∞
∫

−∞

dm ρSS(m) e−itm , (22)
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where

ρSS(m) = g(m−mg)
ΓS

(m−mS)2 +
Γ

2
S
4

S

2π
, (23)

S =
∑

α

|aS,α(KS → α)|2 , (24)

and so on.
The form of density ρSS(m) defined by (23) is not the most general one.

In more realistic models functions ωj,α(m) and of type ωS,β(m), ωL,β(m)
lead to the densities ρ(m) of general form similar to (23) with g(m −mg)
and S ≡ S(m) having more involved form [13, 14]. In the general case the
threshold factor g(m−mg) describes the behavior of ρ(m) for small m, (i.e.,
for m ≃ mg) and it is responsible for the long time properties of amplitudes
of type Ajk(t) and ASS(t). The second factor in the formulae of type (23)
having the Breit–Wigner form results from the pole structure of functions
of type ωS,β(m), ωL,β(m) (see (19), (20)) defining densities ρ(m) and it is
responsible for the form of Ajk(t),ASS(t) etc. for the intermediate times
(i.e. it is responsible for the exponential part of the survival probabilities).
The third factor, i.e. the factor corresponding to S(m) ensures the suitable
behavior of ρ(m) for m→∞.

For simplicity, it is assumed in [12] that mg = 0. So all integrals of
type (22) and (17) are taken between the limits m = 0 and m = +∞.
All these assumptions made it possible to express amplitudes of type Ajk(t)
in [12] in terms of known special functions. The same assumptions were used
in [15] (see [15], relations (37)–(39) and (42)–(47)) and will be used in this
paper. Note that putting g(m−mg) ≡ 1 in (22) leads to strictly exponential
form of amplitudes of type ASS(t) as functions of time t. On the other
hand, keeping g(m) in the assumed simplest physically admissible form (21)
results in the presence of additional nonoscillatory terms in amplitudes of
type ASS(t),ALL(t) etc. and thus in amplitudes Ajk(t) as well (see [12,15]).

In [15] the analytical formulae for Ajk(t) obtained in [12] were used
as the starting point to find analytical expressions for matrix elements of
the effective Hamiltonian for this model for t = τL and then to obtain
a numerical value for the possible consequence of the Khalfin’s Theorem
analyzed in [16]. It is found there that, contrary to the standard LOY
result (7), the diagonal matrix elements of the exact effective Hamiltonian
for neutral meson complex cannot be equal if CPT symmetry holds but CP
symmetry is violated. We found in [15] that
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Re(h11(t ∼ τL)− h22(t ∼ τL)) ≃ −4.771 × 10−18 MeV , (25)

Im(h11(t ∼ τL)− h22(t ∼ τL)) ≃ 7.283 × 10−16 MeV (26)

and
|Re(h11(t ∼ τL)− h22(t ∼ τL))|

maverage
≡

mK0 −mK̄0

maverage
∼ 10−21 , (27)

where hjk(t) = 〈j|H‖(t)|k〉 (j, k = 1, 2) and H‖(t) is the effective Hamilto-
nian. These results were obtained analytically for the considered model for
the neutral kaon system in the case when the total system is CPT-invariant
but CP-non-invariant (equations (68), (69) and (70) in [15]). The estima-
tions (25)–(27) were obtained by inserting (20) and related mS ≃ mL ≃
maverage = 497.648 MeV, ∆m = 3.489× 10−12 MeV, τS = 0.8935× 10−10 s,
τL = 5.17×10−8 s, γL = 1.3×10−14 MeV, γS = 7.4×10−12 MeV in formulae
of type (19). In this paper we will use the same experimental data. We will
also use the same notations and definitions as in [15]:

γS ≡
ΓS

2
, γL ≡

ΓL

2
, ∆m ≡ mL −mS, (28)

and so on. Note that results (25)–(27) agree with the general result obtained
in [16].

The detailed analysis of the matrix elements of the effective Hamilto-
nian for the K0 − K̄0 system shows that the non-zero difference between
the diagonal matrix elements of the effective Hamiltonian in the consid-
ered model is caused by the nonzero contribution into ρjk(m), (18), coming
from expressions for 〈KS|e

−itH |KL〉 and 〈KL|e
−itH |KS〉 and by the non-

oscillatory terms in the formulae for the amplitudes of type (17) for tran-
sitions: K0 ←→ K0, K̄0 ←→ K̄0 K0 ←→ K̄0. It is not difficult to verify
that neglecting the mentioned nonzero contribution and dropping all these
non-oscillatory terms leads to the zero difference of the diagonal matrix el-
ements of the effective Hamiltonian in the considered case. This is because,
in fact, dropping these non–oscillatory terms is equivalent to replacing in
(17) densities ρjk(m) defined by (18)–(21) with densities defined by the new
function gWW(m) instead of g(m) given by (21) such that gWW(m) = 1 for
all −∞ ≤ m ≤ +∞. Thus, the integrals, e.g. in formulae of type (22), are
taken between the limits m = −∞ and m = +∞ with densities of type (23)
having the Breit–Wigner form (and not truncated for m < mg = 0) which
leads to strictly exponential form of, e.g. |ASS(t)|

2 and the like. The effective
Hamiltonian H‖(t) obtained in such a case is the LOY effective Hamiltonian,
HLOY.
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In this paper we continue searching for the properties of the model ana-
lyzed in [15]. The aim is to show how the difference of the diagonal matrix
elements (h11(t) − h22(t)) discussed in [15] and some other parameters de-
scribing neutral kaons (including r(t), (11)) change in time t in the case
of preserved CPT and violated CP symmetries. The paper is organized as
follows. In Section 2 we collect the formulae for the matrix elements of the
effective Hamiltonian necessary for further analysis. Section 3 contains a
numerical verification of the Khalfin’s Theorem (11). We show there how
this Theorem “acts”. In Section 4 the value of the difference of the diagonal
elements (h11(t) − h22(t)) is shown as calculated at t = τL with the use of
the Mathematica. Also, in this section the time dependence of the real and
imaginary parts of the diagonal matrix elements of the effective Hamiltonian
(h11(t) − h22(t)) in graphical form is given. In Section 5 the eigenvalues of
the effective Hamiltonian µL(t), µS(t) are calculated and the parameters of
the violation of the CP symmetry εL(t), εS(t) are estimated. We also show
graphically the time dependence of all the calculated quantities there. In
Section 6 we check the correctness of our results by verifying the relation
(µL(t) + µS(t) = h11(t) + h22(t)) known from the literature. Section 7 con-
tains a discussion of the results obtained in Sections 3–6 and some remarks
concerning the experiments with neutral kaons.

2. Matrix elements of the effective Hamiltonian

General conclusions concerning properties of matrix elements of the ef-
fective Hamiltonian H‖(t) can be drawn using the following identity [16]

H‖(t) ≡ i
∂A(t)

∂t
[A(t)]−1, (29)

where all matrix elements Ajk(t), (j, k = 1, 2) of the matrix A(t) can be
calculated, e.g. by means of (17).

Using (29), one can calculate all the matrix elements of the effective
Hamiltonian H‖ which may now be written as

h11(t) =
i

det A(t)

(

∂A11(t)

∂t
A22(t)−

∂A12(t)

∂t
A21(t)

)

, (30)

h12(t) =
i

det A(t)

(

−
∂A11(t)

∂t
A12(t) +

∂A12(t)

∂t
A11(t)

)

, (31)

h21(t) =
i

det A(t)

(

∂A21(t)

∂t
A22(t)−

∂A22(t)

∂t
A21(t)

)

, (32)

h22(t) =
i

det A(t)

(

−
∂A21(t)

∂t
A12(t) +

∂A22(t)

∂t
A11(t)

)

, (33)
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where

det A(t) = A11(t)A22(t)−A12(t)A21(t) . (34)

So, having these relations and inserting analytical expressions for Ajk(t),
(17), calculated in [15] within the assumptions (6) and [CP,H] 6= 0, one
obtains all matrix elements hjk(t) for the model considered. Next, such
obtained analytical formulae for hjk(t) can be used for numerical calculations
of some parameters characterizing neutral kaons for instants of time changing
in given time intervals.

3. Numerical examination of the Khalfin’s Theorem

It seems to be interesting to verify how the Khalfin’s Theorem (11) acts in
the system on neutral mesons. To see this, we can use amplitudes A12(t) and
A21(t) calculated within the model considered in [15] in the case of conserved
CPT and violated CP symmetries. It is not difficult to calculate the modulus

of the ratio A12(t)
A21(t) using numerical methods. The results of such calculations

are presented below in Fig. 1(a) and (b). There are y(x) = |A12(x)
A21(x) | and

x = (γL/~)t in these figures.

(a) (b)

Fig. 1. The time dependence of the absolute value of y(x) = |r(t)| ≡ |A12(t)
A21(t) | in

(a) x ∈ (0.01, 103) and (b) x ∈ (0.1, 1). Here and in all other figures: x = (γL/~)t.

These figures show that if one is able to measure the modulus of the

ratio A12(t)
A21(t) only up to the accuracy of the order of 10−15 then one sees this

ratio as a constant function of time: for x ∈ (0.01, 103) we find that

ymax(x)− ymin(x) = 3.33067 × 10−16 , (35)

where

ymax(x) = |r(t)|max ,

ymin(x) = |r(t)|min . (36)
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4. The difference of the diagonal matrix elements (h11(t)− h22(t))

Assuming that the CPT symmetry is conserved in the system under con-
siderations ([CPT,H]=0) and using the necessary relations from [12,15,16]
one finds the general form of the difference of the diagonal matrix elements
of the effective Hamiltonian. It has the following form

h11(t)− h22(t) =
X(t)

detA(t)
, (37)

where

X(t) = i

(

∂A21(t)

∂t
A12(t)−

∂A12(t)

∂t
A21(t)

)

(38)

and detA(t) is defined in (34).
Our analytical result in the one-pole approximation obtained in [15] for

t = τL can be written as

h11(τL)− h22(τL) ≃ (−4.771 × 10−18 + i 7.283 × 10−16) MeV . (39)

The numerical result for t = τL in the one-pole approximation obtained
using the Mathematica has the following form

h11(τL)− h22(τL) ≃ (−7.129 × 10−17 + i 1.986 × 10−13) MeV . (40)

It is seen, that the difference between (39) and (40) is small and it may be
attributed to finite accuracy of numerical calculations performed by Math-
ematica. No approximations have been used in the analytical calculations.

Putting Ajk(t) (j, k = 1, 2) given by (17) into (37) and using the energy
density ρjk(m) found in [15], the difference (h11(t)−h22(t)) can be calculated
as the function of time t. The results of our calculations are presented in

0.2 0.4 0.6 0.8 1
x

-3´10-16
-2.5´10-16

-2´10-16
-1.5´10-16

-1´10-16
-5´10-17

y

20 40 60 80 100
x

-1´10-18

-8´10-19

-6´10-19

-4´10-19

-2´10-19

y

(a) (b)

Fig. 2. The time dependence of the real part of the diagonal matrix elements of the

effective Hamiltonian y = Re(h11(x) − h22(x)) in the range (a) x ∈ (0.001, 1) and

(b) x ∈ (1, 103).
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a graphical form. The figures below show the time dependence of the real and
imaginary parts of the diagonal matrix elements of the effective Hamiltonian
(h11(t)− h22(t)).

At this point it should be explained that a more accurate analysis of the
results of the calculations which lead to Fig. 2(a) and (b) and the use of
a larger scale show that the obtained curves are not so smooth as can be
seen in Fig. 3(a) and (b) but they are similar to curves in Fig. 3(a) and (b).
Note that in Fig. 2(a) we have Re(h11(t)− h22(t)) = Re(h11(τL)− h22(τL))
for x = 1.

0.2 0.4 0.6 0.8 1
x

1.96´10-13

1.97´10-13

1.98´10-13

1.99´10-13

y

20 40 60 80 100
x

1.25´10-13
1.5´10-13
1.75´10-13

2´10-13
2.25´10-13
2.5´10-13
2.75´10-13

y

(a) (b)

Fig. 3. The time dependence of the imaginary part of the diagonal matrix ele-

ments of the effective Hamiltonian y = Im(h11(x) − h22(x)) in the interval (a)

x ∈ (0.001, 1) and (b) x ∈ (1, 103).

5. Calculation of µL(t), µS(t) and εL(t), εS(t)

The eigenvalues of the effective Hamiltonian µL(t), µS(t) can be written
as [18]

µL(t) = h0(t)− h(t) , (41)

µS(t) = h0(t) + h(t) , (42)

where

h0(t) = 1
2 (h11(t) + h22(t)) , (43)

h(t) =
√

h2
z(t) + h12(t)h21(t) (44)

and

hz(t) = 1
2 (h11(t)− h22(t)) . (45)

From (41) and (42) we have

µS(t) + µL(t) = h11(t) + h22(t) ≡ Tr (H‖(t)) . (46)
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Relation (46) does not depend on any approximations and it is always true for
every (2× 2) matrix. Inserting (30)–(33) into (41) and (34) and then using
(17) and performing all integrations of type (17) one can obtain for t = τL

µL(τL) ≃ (497.648 − i 4.458 × 10−13) MeV , (47)

and

µS(τL) ≃ (497.648 − i 2.471 × 10−13) MeV . (48)

The general formula for µL(S)(t) can also be written as follows

µL(S)(t) = mL(S)(t)−
i

2
γL(S)(t) . (49)

The results of our calculations for the real part and imaginary part in
(47) and (48) are rounded to the third decimal place. It should be noted
that the real part in (47) and the real part in (48) differ in the fourteenth
decimal place. The above mentioned result corresponds with the fact, that
mS 6= mL and there is |mL −mS| ∼ |γS|, [5, 20].

The time dependence of µL(t) and µS(t) is given below. Expansion of
scale in Fig. 4(a) and Fig. 4(b) shows that continuous fluctuations with
amplitudes of the order of 10−14 appear.

20 40 60 80 100
x

496.25

496.5

496.75

497

497.25

497.5

497.75

498
y

20 40 60 80 100
x

496.25

496.5

496.75

497

497.25

497.5

497.75

498
y

(a) (b)

Fig. 4. The time dependence of the real part of (a) µL(x) : y = Re(µL(x)) and

(b) µS(x) : y = Re(µS(x)) in the interval x ∈ (0.001, 103).

We have the following formulae (see, e.g. [18])

εL(t) = −
h21(t)− h22(t) + µL(t)

h21(t) + h22(t)− µL(t)
, (50)

εS(t) = −
h21(t) + h22(t)− µS(t)

h21(t)− h22(t) + µS(t)
(51)

and we get for t = τL

εL(τL) ≃ −1.0000000000184743′ + i 0.0′ (52)

and εS(τL) ≃ 1.0000157759810688′ − i 0.0′ . (53)
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20 40 60 80 100
x

-6´10-13

-5´10-13

-4´10-13

-3´10-13
y

20 40 60 80 100
x

-2.75´10-13
-2.5´10-13
-2.25´10-13

-2´10-13
-1.75´10-13
-1.5´10-13
-1.25´10-13

-1´10-13
y

(a) (b)

Fig. 5. The time dependence of the imaginary part of (a) µL(x) : y = Im(µL(x))

and (b) µS(x) : y = Im(µS(x)) in the interval x ∈ (0.001, 103).

The time dependences of εL(t) and εS(t) are presented below.
Expansion of scale on Fig. 6(a) and Fig. 6(b) shows, that continuous

fluctuations with amplitudes of the order of 10−12 appear here.

20 40 60 80 100
x

-1

-0.8

-0.6

-0.4

-0.2

y

20 40 60 80 100
x

0.2

0.4

0.6

0.8

1

y

(a) (b)

Fig. 6. The time dependence of the real part of (a) εL(x) : y = Re(εL(x)) and

(b) εS(x) : y = Re(εS(x)) in the interval x ∈ (0.001, 103).

From the formula

ε(t) = 1
2 (εL(t) + εS(t)) (54)

we have for t = τL

ε(τL) ≃ 7.888 × 10−6 − i 0.0′ . (55)

The absolute value of ε(τL)

|ε(τL)| ≃ 7.888 × 10−6 . (56)

The figures belowpresent the time dependence of the absolute value of ε(t).
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Fig. 7. The time dependence of the imaginary part of (a) εL(x) : y = Im(εL(x))

and (b) εS(x) : y = Im(εS(x)) in the interval x ∈ (0.001, 103).
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Fig. 8. The time dependence of the absolute value of (a) ε(t): y = |ε(t)| in the

interval x ∈ (0.001, 103) and (b) ε(t): y = |ε(t)| in the interval x ∈ (1, 103).

6. Verification of the relation µL(t) + µS(t) = h11(t) + h22(t)

All results in this section have been rounded to the decimal third place.
In accordance with formulae ((47), (48)) for t = τL we have

µL(τL) ≃ (497.648 − i 4.458 × 10−13) MeV,

µS(τL) ≃ (497.648 − i 2.471 × 10−13) MeV

and the corresponding matrix elements of the effective Hamiltonian (formu-
lae (30)–(33)) can be written for t = τL as

h11(τL) ≃ (497.648 − i 2.471 × 10−13) MeV , (57)

h12(τL) ≃ (1.787 × 10−23 − i 6.401 × 10−24) MeV , (58)

h21(τL) ≃ (−1.799 × 10−23 − i 5.127 × 10−24) MeV , (59)

h22(τL) ≃ (497.648 − i 4.458 × 10−13) MeV . (60)
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For t = τL we get

µL(τL)+µS(τL) = h11(τL)+h22(τL) ≃ (995.296−i 6.929×10−13) MeV . (61)

Relation (46) is also fulfilled at t = τS

µL(τS)+µS(τS) = h11(τS)+h22(τS) ≃ (995.296−i 9.623×10−14) MeV . (62)

Comparing (61) with (62) we can see that

µL(τL) + µS(τL) 6= µL(τS) + µS(τS) . (63)

It is interesting to notice that

µL(τL) + µS(τS) ≃ (995.296 − i 5.234 × 10−13) MeV , (64)

µL(τS) + µS(τL) ≃ (995.296 − i 2.658 × 10−13) MeV , (65)

h11(τS) + h22(τL) ≃ (995.296 + i 4.644 × 10−13) MeV , (66)

h11(τL) + h22(τS) ≃ (995.296 + i 3.247 × 10−13) MeV . (67)

From our calculations it follows that the real parts of formulae (64)–(67)
differ in the twelfth or thirteenth decimal place. This means that

µL(τS) + µS(τL) 6= µL(τS) + µS(τS) , (68)

µL(τS) + µS(τL) 6= µL(τL) + µS(τL) , (69)

µL(τS) + µS(τL) 6= µL(τL) + µS(τS) , (70)

µL(τS) + µS(τL) 6= h11(τS) + h22(τS) , (71)

µL(τL) + µS(τS) 6= h11(τL) + h22(τL) , (72)

µL(τL) + µS(τS) 6= h11(τL) + h22(τS) . (73)

and so on.

7. Final remarks

First, as it was pointed out in [12], let us notice that in the considered
model some relations assumed there and allowing to perform integrations
of type (17) are not valid in the K0–K̄0 system (see a comment between
formulae (5.10) and (5.11) of [12], Sec. 5). These relations were also used
in [12] and [15]. Next, a drawback of our model is that at t = 0 we obtain
h11(t = 0) = ∞ and h22(t = 0) = ∞. However, this model allows to study
all the consequences of Khalfin’s Theorem and theorems considered in [16].
Bearing in mind the limitations of our model mentioned above one should
not expect that our calculations based on this model will result in an exact
reconstruction of all experimental parameters characterizing the neutral K
meson system.
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Results presented in Sec. 3 show how Khalfin’s Theorem works. We can
conclude that the effect of this Theorem should be visible in experiments
with the neutral kaon complex in which the modulus of r(t), (11), can be
measured with the accuracy of order 10−16 or better. On the other hand,
these results are in perfect agreement with the supposition formulated in [19].
Experimental results give |1 − |r(t)| | ∼ 10−3 = const. with some limited
accuracy (see, e.g. [20]). The explanation of this fact proposed in [19] is
based on the assumption that

r(t) = rLOY + d(t) ,

where rLOY stands for r(t) calculated within the LOY theory, and d(t) is
assumed to be a function varying in time t such that |d(t)| < 10−11.

Results obtained in Sec. 4 suggest that the real part of the difference
(h11(t)−h22(t)) is different from zero for very large times t: from t ∼ 0, 1τL
up to t ∼ 100τL. Moreover, after division by maverage, this difference is only a
little smaller than the corresponding experimental value [20]. The imaginary
part of (h11(t)−h22(t)) turned out to be different from zero as well. However,
this part oscillates about 2 × 10−13 MeV very fast. Note that from the
results contained in [16] it follows that these differences should differ from
zero for all t > 0. Within the standard treatment of the neutral K system
the measurement of the difference of masses (mK0 − mK̄0) is considered
as the CPT invariance test. This interpretation of such tests is based on
the properties (7), (8) of the LOY approach: Within the LOY theory CPT
symmetry is conserved only if (mK0 −mK̄0) = 0. The results obtained in
Sec. 4 and in [15–17] show that such an interpretation of this test is true only
for the LOY approximation and beyond LOY approximation properties (7),
(8) do not occur. It seems to be obvious that the description of neutral K
complex using the more accurate formalism than the LOY approximation
leads to a more realistic description of such a complex. So, if within the
more accurate theory one obtains (mK0 −mK̄0) 6= 0 when CPT symmetry
holds and CP symmetry is violated then one is forced to conclude that
such a property must be valid in the real CPT invariant systems. Therefore,
taking into account results obtained in Sec. 4 (and in [15–17]) the conclusion
that the measurement of the mass difference, (mK0 −mK̄0), should not be
considered as CPT invariance test seems to be correct.

Results in Sec. 5 show that the imaginary parts of parameters µL, µS and
εL, εS vary in time too. We can say the same about their real parts. The
oscillation amplitude is of the order of 10−13 for Im (µL(S)) and it is smaller

than 10−27 for Im (ε(S)). The real parts Re (µL(S)) and Re (εL(S)) oscillate
in a similar way as their imaginary parts and this is the reason why they
cannot be shown in our figures. The parameter ε, (54), is also a quantity
varying in time as we can see from the graphical results (see Fig. 8(a) and
Fig. 8(b)). The absolute value of |ε| oscillates around the value 8× 10−6.
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In Sec. 6, relation (46) was investigated. We know, from general consid-
erations, that it has to be fulfilled for every time t irrespective of whether we
consider an approximate model of neutral K meson system or if we investi-
gate the exactly solvable model of this system. The considered mathematical
results show that the left side of equation (46) is the same as its right side
for t = τl, t = τS. A similar mathematical result was obtained for other
times. From relation (63) it follows that the left side of equation (46), as
well as its rights side, are not constant in the time.

Relations (64)–(73) show that equation (46) is no longer fulfilled when
the separate components of sums appearing in its left and right sides are
taken at different moments of time and then inserted into this equation.
From this observation and from results in Sec. 4, we can draw an important
conclusion concerning the methods of experimental data registering and ex-
perimental data processing.

Let us note that an experimental system containing detectors which reg-
ister the neutral K meson decay products can be schematically presented as
in Fig. 9. This figure presents a longitudinal section of a cylindrical vacuum
chamber. A K meson stream is fired into this chamber along a horizontal
axis l on the left side. Detectors D surrounding the chamber form its walls.
These detectors register the neutral K meson decay products. In the first
region of this chamber (I), we observe a great amount of the decay products
of neutral kaons into two pions (KS −→ 2π). In the second region of this
chamber (II), we usually observe a great amount of the decay products of
neutral kaons into three pions (KL −→ 3π). We can interpret the l axis
as a path in an uniform straight-line motion of neutral kaons, whose decay
products are registered by detectors D. We can write lI = vKS

τS in the first

Fig. 9. A scheme of the experimental set for the experiment with the neutral K

meson described in this section.
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region (I) and lII = vKL
τL in the second region (II) (where vKS(L)

is the kaon

KS(L) speed). One can also obtain (for comparison): l
′

I = c τS = 0.026805 m

and l
′

II = c τL = 15.51 m (c = 3 × 108 s — the speed of light in vacuum,
τS = 0.8935 × 10−10 s a τL = 5.17 × 10−8 s).

Let us now return to the above mentioned conclusion. From (64)–(73)
and from results presented in Sec. 5, it follows that only these parameters
can correctly reflect real properties of neutral K system which are calcu-
lated using only data obtained from a ring of detectors limited by distances
(l, l+ ∆l). Since t ∼ l, the events are registered between t, t+ ∆t from the
initial instant. Of course, ∆l should be as small as possible. In other words,
one should not use the experimental data obtained from the registration of
the neutral K meson decay products in the calculations if these neutral K
meson decay products come from different and distant parts of the mea-
surement set of the type shown in Fig. 9. For example, one should not use
calculations which were registered by the detector D in the region where
t ∼ τS simultaneously with the data which were registered by the detector
D in the region where t ∼ τL. One should not mix the data coming from
different and distant parts of the measurement. If this rule is not observed,
it may turn out that the obtained values µL(S) (obtained on the basis of pa-
rameters measured in this way) will not satisfy the consistency check given
by (46). Of course, in order to check the consistency of the experimental
results with (46) the experiment should be conducted in such a way that
both sides of (46) can be found in independent measurements. Then one
will obtain independently each other the left side and the right side of this
equality.
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