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We study chaotic inflation with a quadratic potential in all dimensions.
The slow-roll parameters, the spectral indices of scalar and tensor pertur-
bations and also their running have been calculated in all dimensions.
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Following the advent of string theory and its implication that space may
have more than the usual three dimensions, we here study chaotic inflation
with a quadratic potential, V (ϕ) = m2ϕ2/2, in all dimensions.

Take the metric in constant (D + 1)-dimensional spacetime in the fol-
lowing form (we use natural units or high-energy physics units in which the
fundamental constants are ~ = c = kB = 1, G = ℓ2

Pl = 1/m2
Pl)

ds2 = −N2(t)dt2 + a2(t)dΣ2
k , (1)

where N(t) denotes the lapse function and dΣ2
k is the line element for

a D-manifold of constant curvature k = +1, 0,−1, corresponding to the
closed, flat and hyperbolic spacelike sections, respectively. The Ricci scalar
is given by [1]

R =
D

N2

{

2ä

a
+ (D − 1)

[ (

ȧ

a

)2

+
N2k

a2

]

− 2ȧṄ

aN

}

. (2)

The Einstein–Hilbert action for the pure gravity is given by [1]

SG =
1

2κ(D+1)

∫

d(D+1)x
√−gR , (3)
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and the action for a perfect fluid may be expressed by

SM = −
∫

d(D+1)x
√−gρ . (4)

In Eq. (3), the gravitational coupling constant in (D+1)-dimensional space-
time, κ(D+1), is related to the (D + 1)-dimensional gravitational constant
G(D+1) by [2]

κ(D+1) = (D − 1)S[D]G(D+1) , (5)

where

S[D] =
2πD/2

Γ
(

D
2

) , (6)

where S[D] is the surface area of the unit sphere in D-dimensional spaces. In
the case (3+1), (4+1) and (5+1)-dimensional spacetime we have κ(3+1) =

8πG(3+1) (i.e. κ = 8πG), κ(4+1) = 6π2G(4+1) and κ(5+1) = 32π2

3 G(5+1),
respectively. Using (5) and (6) we have (see Appendix)

κ(D+1) =
2(D − 1)πD/2G(D+1)

Γ
(

D
2

) . (7)

Using (3) and (4), we obtain the following Lagrangian [1]

L := − aD

2κ(D+1)

D(D − 1)

N

[

(

ȧ

a

)2

− N2k

a2

]

− ρNaD. (8)

Varying the above Lagrangian with respect to N and a, we find the following
equations of motion in the gauge N = 1, respectively:

(

ȧ

a

)2

+
k

a2
=

2κ(D+1)ρ

D(D − 1)
, (9)

ä

a
+

[

(

ȧ

a

)2

+
k

a2

]

(

−1 +
D

2

)

+
κ(D+1)p

D − 1
= 0 . (10)

Using (9) and (10), one gets the continuity equation

d

dt

(

ρaD
)

+ p
d

dt

(

aD
)

= 0 . (11)

Inserting k = 0 for a flat universe and the energy density and the pressure
of a homogeneous inflation field

ρ ≡ 1

2
ϕ̇2 + V (ϕ) , (12)

p ≡ 1

2
ϕ̇2 − V (ϕ) (13)
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in Eqs. (9) and (11), we are led to

H2 =
2κ(D+1)

D(D − 1)

(

1

2
ϕ̇2 + V (ϕ)

)

, (14)

ϕ̈ + DHϕ̇ = −V ′(ϕ) , (15)

where H = ȧ
a . The slow-roll conditions in D-dimensional spaces read [3]

ϕ̇2 ≪ V (ϕ) , ϕ̈ ≪ DHϕ̇ , −Ḣ ≪ H2 . (16)

Using these conditions, Eqs. (14) and (15) can be rewritten

H2 =
2κ(D+1)V (ϕ)

D(D − 1)
, (17)

DHϕ̇ ≃ −V ′(ϕ) . (18)

During inflation, H is slowly varying in the sense that its change per Hubble
time, ε ≡ −Ḣ/H2 is less than one. The slow-roll condition η ≪ 1 is actu-
ally a consequence of the condition ε ≪ 1 plus the slow-roll approximation
DHϕ̇ ≃ −V ′(ϕ). Indeed, differentiating (18) one finds

ϕ̈

Hϕ̇
= ε − η , (19)

where the slow-roll parameters in any constant space dimension are defined
by

ε ≡ − Ḣ

H2
=

(D − 1)

4κ(D+1)

(

V ′

V

)2

, (20)

η ≡ V ′′

DH2
=

(D − 1)

2κ(D+1)

(

V ′′

V

)

. (21)

The number of e-foldings between ti and tf is given by

N =

tf
∫

ti

H(t)dt = ln

(

af

ai

)

≃ −
2κ(D+1)

(D − 1)

φf
∫

φi

V

V ′
dϕ . (22)

The amplitudes of scalar and tensor perturbations generated in inflation can
be expressed by [4–6]

A2
S =

(

H

2π

)2 (

H

ϕ̇

)2

, (23)

A2
T =

κ(D+1)

(D − 1)

(

H

2π

)2

. (24)
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These amplitudes are equal to 25
4 times the amplitudes as given in Ref. [5].

The amplitudes of scalar and tensor perturbations generated in inflation can
be determined by substituting (17) and (18) into (23) and (24)1

A2
S =

2κ3
(D+1)V

3

D(D − 1)3π2V ′2
, (25)

A2
T =

κ2
(D+1)V

2π2D(D − 1)2
. (26)

These expressions are evaluated at the horizon crossing time when k =
aH. Since the value of Hubble constant does not change too much during
inflationary epoch, we can obtain dk = Hda and d ln k = Hdt = da/a.
Using the slow-roll condition in (D + 1)-dimensional spacetime

d

d ln k
= − V ′

DH2

d

dϕ
, (27)

and also a lengthy but straightforward calculation by using (17), (18), (20),
(21) and (23)–(27) we find

nS − 1 ≡ d ln A2
S

d ln k
= −6ε + 2η , (28)

nT ≡ d ln A2
T

d ln k
= −2ε , (29)

where nS and nT are the spectral indices of scalar and tensor perturbations,
respectively. If nS and nT are expressed as a function of e-folding N , one can
use the fact that d

d ln k = − d
dN to obtain the desired derivatives even more

easily. To calculate the running of the scalar and tensor spectral indices in
all dimensions, we use Eqs. (20), (21) and (27). Therefore we have in all
dimensions

dε

d ln k
= −2εη + 4ε2 , (30)

dη

d ln k
= 2εη − ξ , (31)

1 It is worth mentioning that the authors of Refs. [3,6] have studied chaotic inflation in
higher dimensions and also in a model universe with time variable space dimensions
by taking κ = 8πG for all dimensions. Our results above improve the results given
in Refs. [3, 6] because we here consider the gravitational coupling constant in all
dimensions as a function of spatial dimensions, as given in Eq. (7).
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where the third slow-roll parameter is defined by2

ξ ≡ (D − 1)2

4κ2
(D+1)

(

V ′V ′′′

V 2

)

. (32)

Using the above equations, running of the spectral indices of scalar and
tensor perturbations in higher dimensions we have these explicit expressions

dnS

d ln k
= 16εη − 24ε2 − 2ξ , (33)

dnT

d ln k
= 4εη − 8ε2 . (34)

For the chaotic inflation with a quadratic potential, m2ϕ2/2, the solution
of Eqs. (17) and (18) are given by

ϕ(t) = ϕi − m

√

D − 1

Dκ(D+1)
t , (35)

a(t) = ai exp

(

κ(D+1)

2(D − 1)

[

ϕ2
i − ϕ2(t)

]

)

. (36)

Using the slow-roll parameters

ε = η =
(D − 1)

κ(D+1)ϕ2
, (37)

and the failure of the slow-roll conditions

max{εf ; |ηf |} ≃ 1 , (38)

one concludes that

ϕf =

√

(D − 1)

κ(D+1)
. (39)

Substituting this value of ϕf into (22), one gets

N =
κ(D+1)

2(D − 1)
ϕ2

i −
1

2
. (40)

2 This expression for ξ in all dimensions improve Eq. (56) of Ref. [6] in which κ = 8πG

has been considered for all dimensions.
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One can also obtain the spectral indices of scalar and tensor perturbations
and their running in (D + 1)-spacetime dimension

nS − 1 = −4ε = − 4(D − 1)

κ(D+1)ϕ2
, (41)

nT = −2ε = − 2(D − 1)

κ(D+1)ϕ2
, (42)

dnS

d ln k
= −8ε2 = −8(D − 1)2

κ2
(D+1)ϕ

4
, (43)

dnT

d ln k
= −4ε2 = −4(D − 1)2

κ2
(D+1)ϕ

4
. (44)

Appendix

Gravitational coupling constant in higher dimensions

In (3 + 1)-dimensional spacetime, the gravitational coupling constant is
given by κ = 8πG. Looking for the roots of the factor of 8π in κ we across
the relation

R00 = (D − 2)∇2
Dφ , (45)

where ∇D is the ∇ operator in D-dimensional space. In (3+1)-dimensional
spacetime, the Poisson equation is given by

∇2φ = 4πGρ . (46)

Applying Gauss law for a D-dimensional volume, we find the Poisson equa-
tion for arbitrary fixed dimension

∇2
Dφ = S[D]G(D+1)ρ , (47)

where S[D] is the surface area of a unit sphere in D-dimensional spaces, see
Eq. (6). On the other hand we get

R00 =

(

D − 2

D − 1

)

κ(D+1)ρ . (48)

Using (6), (45), (47) and (48), we are led to the gravitational coupling con-
stant in (D + 1)-dimensional spacetime as given in (5) and (7).
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