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We find a class of exact solutions of differentially rotating dust in the
framework of General Relativity. There exist asymptotically flat spacetimes
of the flow with positive mass function that for radii sufficiently large is
monotone and tends to zero at infinity. Some of the spacetimes may have
non-vanishing total angular momentum.
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1. Introduction

The paper is devoted to investigation of asymptotically flat solutions of
self-gravitating stationary and cylindrically symmetric dust flow on circular
orbits along trajectories of locally non-rotating observers in the framework of
General Relativity. The congruence of locally non-rotating observers used to
define energy-momentum exist globally. The flow is non-rigid (differential)
and non-expanding. It is also purely relativistic — it has no Newtonian
limit. The resulting spacetimes are globally regular, apart from internal
singularities where additional sources of matter and angular momentum may
be located. We shall call it the K flow for brevity. The main deficiency of
the flow is that the proper energy density is necessarily negative definite.
Despite the fact, by matching the solutions onto asymptotically flat vacuum
external solutions, one would obtain spacetimes with positive total mass.
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The result of our paper is the construction of a multipole sequence of
asymptotically flat, stationary, and cylindrically symmetric external solu-
tions of K flow to which a broad class of other asymptotically flat solutions
of K flow can be decomposed. We construct also the corresponding mul-
tipole sequence of internal spacetimes. There exist also a continuum of
basic solutions of which we do not examine here as they are nonanalytic on
the axis of rotation. The stationary part of multipolar solutions that are
asymptotically flat are called external multipoles, and the stationary part
of multipolar solutions that are not asymptotically flat are called internal
multipoles. We show that external multipoles and any asymptotically flat
spacetimes of K flow are massless. Despite the fact, some of the spacetimes
can have non-vanishing total angular momentum.

Even though the resulting spacetimes are solutions of Einstein equa-
tions of a differentially rotating dust, thus more interesting than rigid van
Stockum–Bonnor flows [1,4,5], it seems that they are of no physical concern,
as far as no exotic forms of matter are considered. Physically reliable matter
should have nonnegative energy density, which is not the case for K flow. On
the other hand, it would be interesting to consider a vacuum continuation of
K flow (we leave open the question whether such a continuation is possible),
as the resulting spacetimes would have positive mass and nonzero angular
momentum and would be asymptotically indistinguishable from the Kerr
solution. This is the physical motivation for considering K flow. Moreover,
K flow is interesting per se as it presents itself a class of exactly solvable
dust flows in general relativity with non-trivial spacetime geometry.

It turns out that a structure function of the flow, which is defined as
the scalar product of time translation and axial symmetry Killing vectors
and denoted by K, is the same as for the van-Stockum–Bonnor flow [5],
nonetheless, both the flows and geometry of the resulting spacetimes are
qualitatively different. An asymptotically flat van Stockum–Bonnor flow is
rigid, non-expanding, and has positive energy density proportional to the
square of the vorticity scalar which does not vanish. An asymptotically flat
K flow is differential, non-expanding, locally non-rotating, and has nega-
tive definite energy density proportional to the square of the non-vanishing
shear tensor. Asymptotically flat dust flow of van Stockum–Bonnor does
not rotate with respect to asymptotic observers and moves rigidly, it has
a point-dependent physical velocity as measured with respect to the locally
dragged inertial frames and is proportional to K. Dust of K flow rotates
differentially with respect to asymptotic stationary observers and vorticity
tensor of the flow is identically zero. The angular velocity is proportional to
K and, by construction, is identical to the angular velocity of dragging of
inertial frames ω. The corresponding physical velocity, which by definition
is measured with respect to dragged local inertial frames, is identically zero
— no angular momentum is carried by elements of K flow.
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As an example we construct a z-symmetric, cylindrically symmetric, and
stationary for radii sufficiently large, asymptotically flat spacetime which is
globally smooth (with the exception of singularities residing on the axis of
rotation), and which contains dipole momentum in its series expansion in
external multipoles. Consequently, the solution has nonzero total angular
momentum and zero total mass.

In what follows we shall be using notation in which two vectors placed
adjacent to each other denotes a scalar product. We use units in which
c = 1 = G.

2. Setup

We assume global existence of the cylindrical symmetry space-like Killing
vector η with closed field lines, together with global existence of the time
translation Killing vector ξ of which field lines are opened, time-like for radii
sufficiently large, and asymptotically normalizable to unity. Having in mind
stationary and asymptotically flat spacetimes with cylindrical symmetry, we
shall proceed as in the standard theory of rotating stars in the relativistic
astrophysics [3]. The assumption of asymptotic flatness allows for the unique
determination of Killing vectors ξ and η by the defining properties. In
addition one assumes that asymptotically ξη → 0. Field lines of the Killing
vectors, which clearly are frame independent objects, may be viewed as
two of four coordinate lines in some particular coordinates in which the
time coordinate t runs along open lines of ξ and the cyclic coordinate φ
along closed lines of η, that is, ξ ≡ ∂t and η ≡ ∂φ by definition. The
other two, denoted by ρ̃ and z̃, are arbitrary internal coordinates in a two
dimensional subspace orthogonal to ξ and η. In this coordinates the most
general line element of a cylindrically symmetric and stationary spacetime
is fully determined by four structure functions λ(ρ̃, z̃), ψ(ρ̃, z̃), ω(ρ̃, z̃) and
µ̃(ρ̃, z̃) and reads [3]

ds2 = e2λdt2 − e2ψ (dφ− ωdt)2 − e2µ̃
(
dρ̃2 + dz̃2

)
. (2.1)

The particular coordinates, which we shall call Bardeen coordinates, are
distinguished by the property that in these coordinates Killing vectors ξ
and η attain particularly simple form

ξµ = δµt , ηµ = δµφ .

In asymptotically flat spacetime one can introduce cylindrical coordinate
system in which the line element at infinity reduces to

ds2 → dt2 − dρ2 − ρ2dφ2 − dz2 .
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Axes of the coordinate frame are attached to ‘fixed stars’, otherwise the axes
would rotate. This in turn would be in contradiction with the assumption
that ∂t can be asymptotically normalised to unity. One assumes, therefore,
that asymptotically the condition that e2λ − ω2e2ψ > 0 should hold. The
latter is not the case e.g. in a uniformly rotating frame of reference. Put
differently, Bardeen coordinates are asymptotically inertial (anyway, this
metric can be treated more formally and be used to describe solutions that
are not asymptotically flat).

2.1. The line element of K flow

We derive the line element of the K flow step by step from the general
form of the line element given in Eq. (2.1). We specify the structure functions
uniquely by the requirement that dust spacetime trajectories are identical
to field lines of the four-velocity field of locally non-rotating observers and
that Einstein equations are satisfied.

2.1.1. Locally non-rotating observers

It should be clear that irrespectively of any particular reference frame,
a generic cylindrically symmetric and stationary flow on circular orbits is
fully determined by a four-velocity field

U(Ω) = Z(Ω)(ξ +Ωη) ,

provided

Z(Ω)−2 ≡ ξξ + 2Ωξη +Ω2ηη > 0, £ξΩ = 0 = £ηΩ .

In an asymptotically flat spacetime Ω has the interpretation of the angular
velocity measured with respect to ‘fixed stars’. In particular, the condition
U(Ω)η = 0 gives

Ω = − ξη

ηη
≡ ω .

The vorticity tensor1 of velocity field n ≡ U(ω) vanishes identically, which
can be verified by direct calculation in Bardeen coordinates (2.1). Therefore,
the observers are called locally non-rotating, although they move differen-
tially on circular orbits with respect to ‘fixed stars’ with angular velocity
ω of dragging of inertial frames. The congruence of locally non-rotating

1 See footnote 2.
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observers distorts without changing proper volume2

Ω2 (n) ≡ 0, Θ (n) ≡ 0, σ2 (n) = −1

4

(ηη)2 (∇ω)2∣∣∣∣
ξη ξξ

ηη ξη

∣∣∣∣
, ω = − ξη

ηη
.

From the construction it follows that dust in asymptotically flat K flow
moves differentially on circular orbits with angular velocity of dragging of
inertial frames ω with respect to an asymptotic stationary observer. This
flow has vanishing vorticity vector, that is, it does not rotate locally, and has
vanishing physical velocity — it is at rest with respect to congruence of local
standards of rest dragged with angular velocity ω. It follows also that the
geometric angular momentum of the flow equal to −nη is identically zero
as n and η are orthogonal. Nevertheless, as we shall see later, total angular
momentum of the flow is nonzero for some asymptotically flat spacetimes of
K flow. This signalises the particular spacetimes must contain singularities
that are sources of the angular momentum. We shall clarify this later.

2.1.2. Specifying the line element

The energy-momentum tensor of dust matter moving along field lines of
vector field n reads T = Dn ⊗ n, where

n(ω) = Z(ω) (ξ + ωη) ⇒ nµ = e−λ [1, 0, ω, 0] .

We stress the construction of the energy-momentum tensor of K flow makes
sense globally as n is everywhere time-like nn = ξξ+2ωξη+ω2ηη ≡ 1 > 0.

Einstein’s equations Gµν = 8πTµν and the contracted Bianchi identities
∇µGµν = 0 yield local conservation law ∇µTµν = 0. In the particular case of
dust with a four-velocity Uµ the latter gives continuous flow along geodesic
paths

∇µ (DUµ) = 0 and Uν∇νUµ = 0 .

The continuity equation is satisfied identically for K flow on the power of
Killing equations and of symmetries of energy density ξD = 0 and ηD = 0.
In Bardeen coordinates nν∇νnµ = {0,−∂ρ̃λ, 0,−∂z̃λ} which implies that λ
must be constant and we may set λ = 0.

2 Dilation tensor Θ(u) and (traceless) shear tensor σ(u) are defined for a velocity field

u as Θµν = ∇αuαhµν and σµν = ∇(αuβ)h
α

µh
β

ν−
1
3
∇αuαhµν , where hµ

ν = δµ
ν−uµuν

is a projector h(u) onto the subspace orthogonal to u. A vorticity tensor Ω(u)

of u is defined as ωµν = ∇[αuβ]h
α

µh
β

ν and it yields a derivative quantity that

characterises vertex — the vorticity vector ωµ = 1
2

εµαβγ
√

−g
uαωβγ . One defines also the

square of dilation scalar σ2(u) = 1
2
σµνσµν ≥ 0 and the square of vorticity scalar

Ω2(u) = 1
2
ωµνωµν ≥ 0, then Ω2(u) = −ωµωµ.
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The existence of vectors η and ξ (and so n) allows for rewriting linear
combinations of Einstein equations in a frame independent way as scalar

identities. Let T̃ ν
µ = T ν

µ − 1
2Tδ

ν
µ . Then for dust matter the scalar

RµνX
µY µ = 8πT̃µνX

µY µ must be either zero or proportional to D for any
vectors X, Y . By taking (n,n) , (η,n) and (η,η) in place of (X,Y ) and
by rearranging we obtain, respectively,

8πD = −e2ψ∇̃jω∇̃jω (2.2)

0 = ∇̃j

(
e3ψ∇̃jω

)
(2.3)

8πD = −e2ψ∇̃jω∇̃jω − 2e−ψ∇̃j∇̃jeψ , (2.4)

where ∇̃j is the covariant derivative operator in the 2-dimensional subspace
S orthogonal to ξ and η.

As follows from Eq. (2.2) energy density is negative definite which is
a generic feature of K flow. As we have seen this is a direct consequence
of Einstein’s equations and Bianchi identities applied to K flow. This fact
is astonishing since for Ω = 0 we would get van Stockum flow [1] with
positive definite density while in astrophysical situations where |Ω| ≫ |ω|
one would expect positive density, as well. This signalises that a generic flow
on circular orbits inGR is not structurally stable, it may change qualitatively
for a family of solutions, say, Ωα = αω.

By subtracting (2.4) from (2.2) we obtain another constraint on structure
functions

∇̃j∇̃jeψ = 0 , (2.5)

thus eψ is a harmonic function on S. Note, that the equation is valid only
for pressure-free flow. By choosing any particular solution ψ we define ge-
ometry and topology of the final spacetime. For example, in asymptotic
flatness ψ must not be bounded from above while for ψ bounded from below
circular orbits of K flow could not have arbitrarily small radii. On the other
hand it seems this choice affects K flow spacetime’s structure not entirely
as shown by the construction which we shall come to in later. In any case,
irrespectively of any particular choice of ψ, regular regions of the spacetimes
must be filled with the nonphysical negative density matter.

We have not yet specified the arbitrary internal coordinates ρ̃ and z̃
on S. Motivated by asymptotic flatness in cylindrical coordinates in which
e2ψ → ρ2 for radii sufficiently large, we can specify the unknown ‘radial’
coordinate by identifying it with eψ which we can always do (at least in the
vicinity of some point in S), namely ρ ≡ eψ. The other coordinate can be
chosen to be the conjugate harmonic function which we shall denote by z.
In these new coordinates on S the line element reads e2µ

(
dρ2 + dz2

)
, where

µ(ρ, z) is to be specified yet. The existence of local coordinates on a two
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dimensional surface in which the line element assumes this symmetric form
was proved by Gauss. Note, that locally this construction is independent on
the particular choice of ψ if only it is harmonic. The analysis of metrical
properties of final spacetime could shed some light on the nature of ψ (or
a class of ψ’s) we have chosen implicitly by the above construction.

We have thus shown that K flow requires at most two structure functions
ω and µ. As ξξ = 1 − ω2ρ2 the resulting spacetime is stationary in regions
where ω2ρ2 < 1. Note that det[g] = −ρ2e4µ does not depend on ω explic-
itly, thus the boundary surface ω2ρ2 = 1 which would demarcate regions in
which ξ is time-like and space-like, is nonsingular. Killing vector η is always
space-like ηη ≡ −ρ2, thus the spacetime of K flow is globally cylindrically
symmetric.

Let’s define K = ξη, then in Bardeen coordinates K = ρ2ω, and (K,µ)
can be used in place of (ω, µ) as structure functions of K flow. Then the line
element (2.1) reduces to

ds2 =

(
1−K2(ρ, z)

ρ2

)
dt2+2K(ρ, z)dtdφ−ρ2dφ2− e2µ(ρ,z)

(
dρ2+dz2

)
. (2.6)

We remind that in spacetimes described by the line element, world-lines of
K flow are geodesics.

2.1.3. Determining the other structure functions of K flow

We have shown that for K flow the general metric (2.1) can be reduced
to (2.6). In what follows we shall derive equations for K and µ. Let Eµν =
Gµν − 8πTµν . Einstein’s equations Eµν = 0 imply from

Eρρ =
e−2µ

ρ

(
ρ3ω

2
,z − ω2

,ρ

4
− µ,ρ

)
, Eρz = −e

−2µ

ρ

(
ρ3ω,ρω,z

2
+ µ,z

)

(Eρρ = −Ezz, Eρz = Ezρ) that

µ,ρ = ρ3ω
2
,z − ω2

,ρ

4
, µ,z = −ρ3ω,ρω,z

2
. (2.7)

For C2 solutions the Schwarz identity µ,ρz = µ,zρ imposes on ω the linear
elliptic constraint

ω,ρρ + 3ρ−1ω,ρ + ω,zz = 0 ⇔ K,ρρ −
K,ρ

ρ
+K,zz = 0 . (2.8)

As

Etφ =
e−2µ

2

(
K,ρρ −

K,ρ

ρ
+K,zz

)
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equation Etφ = 0 is satisfied identically. The constraint is a particular

case of Eq. (2.3). By calculating µ,ρρ and µ,zz from (2.7) and using (2.8),

one may check that the component Ett (then Eφt = Kρ−2Ett) reduces to

Ett = −e−2µρ2
(
ω2
,ρ + ω2

,z

)
− 8πD = 0 which is equivalent to (2.2), that is

8πD = −e−2µρ2
(
ω2
,ρ + ω2

,z

)
. (2.9)

in regular regions of K flow. The other components of E vanish identically
by symmetry. As energy density is negative definite, K flow is nonphysical
in the sense it cannot be made of ordinary matter. Once a solution of (2.8)
is found, which is a simple task due to linearity, (2.9) gives the respective
energy density and (2.7) can be easily integrated.

3. Some solutions

To obtain basic solutions we transform (2.8) to spherical coordinates
ρ→ r sin θ, z → r cos θ. By substituting K(r, θ) = R(r)Y (θ), the separation
of variables gives R(r) = r−n or R(r) = rn+1, and the hypergeometric
equation for Y (x), where x = cos θ. We assume here n ∈ N and take
only solutions that are analytic at x = ±1, by which the multipole series
is established. The general formula for z-antisymmetric and z-symmetric
external multipoles that are solutions of (2.8) and that give asymptotically
flat spacetimes is

K(ρ,z)=





1

(ρ2+z2)m−1/2 2F1

(
m− 1

2 ,−m; 1
2 ,

z2

ρ2+z2

)
, m=1, 2, 3, . . .

z

(ρ2+z2)m+1/2 2F1

(
m+ 1

2 ,−m; 3
2 ,

z2

ρ2+z2

)
, m=1, 2, 3, . . .

(3.1)

For m = 0 one obtains K =
√
ρ2 + z2 and the monopole K = z/

√
ρ2 + z2

which are asymptotically non-flat. The corresponding series of internal mul-
tipoles (singular at infinity) is

K(ρ,z)=





(
ρ2+z2

)m
2F1

(
m− 1

2 ,−m; 1
2 ,

z2

ρ2+z2

)
, m=0, 1, 2, . . .

z
(
ρ2+z2

)m
2F1

(
m+ 1

2 ,−m; 3
2 ,

z2

ρ2+z2

)
, m=0, 1, 2, . . .

(3.2)

3.1. An example

As an example we construct a z-symmetric and bounded K which gives
an asymptotically flat spacetime. Such a solution can be found by calculating
the integral Ka(ρ, z) = −a−1

∫
sdsK̃(ρ, z − s), s ∈ (−a, a) where K̃(ρ, z) is

the monopole solution z/
√
ρ2 + z2 (|K̃| ≤ 1), hence
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Ka(ρ,z)=
2ρ2z

(z+a)
√
ρ2+(z−a)2 + (z−a)

√
ρ2+(z+a)2

+. . .

. . .+
ρ2

2a
ln


z−a+

√
ρ2+(z−a)2

z+a+
√
ρ2+(z+a)2


 . (3.3)

The solution can be represented as a series of external z-symmetric multi-
poles

Ka(ρ, z)=
2

3

ρ2

r3
a2− 1

5

ρ2
(
ρ2−4z2

)

r7
a4+

3

28

ρ2
(
ρ4−12ρ2z2+8z4

)

r11
a6+. . . ,

where r=
√
ρ2+z2. SolutionKa is bounded, has single extremumKa(0,0)=a

and is globally continuous. The conformal mapping z+ iρ = a cosh (u+ iv),
invertible except for points (ρ, z) = (0,±a), defines new coordinates in
which (3.3) reads

Ka(u, v) = a sin2(v)

(
cosh(u) +

1

2
sinh2(u) ln

[
tanh2

(u
2

)])
.

The function is smooth everywhere with the exception of u = 0 at which it
has singularity of the type u2 lnu. Consequently, Ka(ρ, z) is smooth every-
where with the exception of the segment

Sa = {(ρ, z) : ρ = 0, z ∈ [−a, a]} ,

which corresponds to u = 0 and v ∈ [0, π]. The resulting spacetime is
asymptotically flat

Ka(r, θ) ∼
2

3

a2

r
sin2 θ, ωa(r, θ) ∼

2

3

a2

r3
µa(r, θ) ∼

a4 sin4 θ

4r4
, r → ∞ ,

and

gtt ∼ 1 − 4
9
a4

r4
sin2 θ, gtφ ∼ 2

3
a2

r
sin2 θ

(
1 + 3

20
a2

r2
(3 + 5 cos 2θ)

)
,

gφφ = −r2 sin2 θ, grr = gθθ

r2
∼ −1 − a4

2r4 sin4 θ .

Comparison with asymptotical expansion of the Kerr metric gives total mass
of the spacetime, which is Ma = 0, and total angular momentum, which
is Ja = a2/3. The same can be inferred from the Papapetrou conditions
which determine asymptotic behaviour of metric functions [2]. As we have
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noted before, the angular momentum carried by any element of K flow is
zero which signalises that the segment Sa is the source of the total angular
momentum. That it is so, can be proved by analysing the differential form
η = ηµdx

µ. If only M is such that ⋆dη (by ⋆ we denote the Hodge star
operator3) is continuously differentiable inside a region M and continuous
on its boundary ∂M, then the Stokes theorem can be applied giving

∫

∂M

⋆dη =

∫

M

d ⋆ dη if M∩ Sa = ∅ .

Let M be a 3-dimensional subspace of constant time t enclosed by 2-spheres
S1 and S2 of radii r1 and r2, respectively, such that a < r1 < r2, then
M ∩ Sa = ∅. As d ⋆ dη vanishes identically in smooth regions of K flow,
it vanishes outside Sa for Ka, as so, the Stokes theorem can be applied to
M∪ ∂M. This fact and the definition of total angular momentum J of an
asymptotically flat spacetime imply in the limit r2 → ∞ that

J ≡ − lim
r2→∞

1

16π

∫

S2

⋆dη = − 1

16π

∫

S1

⋆dη

for any a < r1 < ∞, provided S1 has the same orientation as S2. In
particular, for ω = ρ−2Ka we obtain in spherical coordinates

J = − lim
r→∞

1

16π

∫∫ (
r2 sin2 θ∂rω

)
r2 sin θdθ ∧ dφ =

a2

3
= Ja . (3.4)

By shrinking and deforming S1 continously to coalesce finally with Sa one
infers that the singular segment is the source of the total angular momentum
of the spacetime described by Ka.

Similarly, total mass M of asymptotically flat spacetime is defined as
a surface integral over sphere at infinity, and for the line element (2.6) written
in spherical coordinates

M = lim
r→∞

1

8π

∫

Sr

⋆dξ=− lim
r→∞

1

8π

∫∫ (
r2 sin2 θω∂rω

)
r2 sin θdθ ∧ dφ , (3.5)

where Sr is the sphere of radius r and ξ = ξµdx
µ. For r finite we obtain

a mass function which is positive and, for r sufficiently large, behaves as
M(r) ∼ 4a4/

(
9r3
)
> 0. The function tends to 0 as r → ∞, which confirms

3 The Hodge operator acting in a spacetime on a differential form dX , where X =
Xµdxµ, gives ⋆dX = 1

2

√
−gεµναβ∇µXνdxα ∧ dxβ. If in addition X satisfies Killing

equations ∇µXν + ∇νXµ = 0, one can prove that d ⋆ dX = 1
3

√
−gεµαβγRµ

ν Xνdxα ∧
dxβ ∧ dxγ .
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our previous result that Ma = 0. The unusual behaviour of M(r) is due to
negative matter density of K flow. Indeed, M(r+ε)−M(r) = (8π)−1

∫
Σε
d⋆

dξ =
∫
Σε

√−gDd3x < 0 for ε > 0, where Σε is the integration region of
constant time and bounded by concentric spheres of radius r and r + ε,
respectively, and r is such that all singularities of K are contained inside the
ball bounded by Sr.

3.2. Asymptotically flat spacetimes of K flow are massless,

some of them may have non-vanishing total angular momentum

Asymptotical flatness for the line element (2.6) requires ω to fall off
in spherical coordinates at least like r−3. If ω ∼ r−3, that is, if a given
asymptotically flat solution contains a nonzero contribution from the dipole
momentum, it necessarily has nonzero total angular momentum defined
by (3.4). All asymptotically flat spacetimes of K flow have vanishing to-
tal mass defined in equation (3.5). This can be interpreted as being due to
the screening of singular sources by regular flow regions of negative energy
density. That such singular sources have to exist, where Einstein’s equations
are not smooth and must contain distributional sources, is best illustrated
by examining the differential form ⋆dη for the dipole solution

K =
a2 sin2 θ

r3
, µ =

9a4

16

sin4 θ

r4
.

For the Stokes theorem to hold everywhere one needs either d ⋆ dη 6= 0 in
r = 0, which must be interpreted as a singularity being the additional dis-
tributional source of angular momentum — this is also curvature singularity
as the Ricci scalar

R = 9e−2µ a
4 sin2 θ

r6

is unbounded at r = 0 (for example, R is divergent along lines of constant
µ as r → 0) — or one has to exclude the ’point’ r = 0 from the spacetime,
then the nonzero J is a topological effect and is in no contradiction with the
fact that d ⋆ dη = 0 everywhere in smooth regions of K flow.

4. Conclusions

We examined cylindrically symmetric and stationary dust flow along
geodesic world-lines of locally non-rotating observers of which space trajec-
tories are rings about common axis of rotation. Such flow can be constructed
globally with the exception of regions where singularities of the flow reside
and that are additional sources of gravitational field. The flow is differential
(the shear tensor is non-zero), non-expanding (the dilation scalar vanishes
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identically) and locally does not rotate (the vorticity tensor vanishes identi-
cally). Local mass density of the flow is necessarily negative-definite which
makes the flow nonphysical as far as usual forms of matter are concerned.

There exist asymptotically flat spacetimes of the flow. Matter of the flow
moves differentially on circular orbits with respect to asymptotic stationary
observers. The spacetimes have vanishing total mass and contain internal
singularities where distributional sources of positive (maybe infinite) mass
and of angular momentum are located, and this should be understood in the
sense that a surface integral over the sphere at infinity that reproduces total
mass, vanishes for asymptotically flat K flow. For radii sufficiently large
the resulting mass function is positive and attains zero monotonically in the
limit of infinite radius. As local energy density is negative definite in the
regions where spacetime is smooth, the internal singularities of the flow must
be distributional sources of positive mass (maybe infinite) of which contri-
bution to the total mass is screened by the regular regions, such that the
mass function is zero at infinity. This phenomenon is quite analogous with
the screening of singularities of negative mass by regions of positive energy
density of asymptotically flat van Stockum–Bonnor flow. By construction
of K flow the specific angular momentum per particle is zero, nevertheless,
total angular momentum of a class of asymptotically flat spacetimes may
be non-zero and we gave an example in (3.3). As the K flow has no spe-
cific angular momentum, the total angular momentum must be located in
singularities of the spacetimes.

Among other solutions, the model contains an infinite sequence of smooth
asymptotically flat multipolar solutions to which a class of other asymptoti-
cally flat solutions of K flow can be decomposed. There also exist an infinite
sequence of the corresponding internal multipolar solutions that are not
asymptotically flat. The solutions are given in general by formulas (3.1)
and (3.2).
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