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A concise description of the curvature structures borne by the Infeld-
van der Waerden γε-formalisms is provided. The derivation of the wave
equations that control the propagation of gravitons and geometric photons
in generally relativistic space-times is then carried out explicitly.
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1. Introduction

The most striking physical feature of the Infeld-van der Waerden
γε-formalisms [1] is related to the possible occurrence of geometric wave
functions for photons in the curvature structures of generally relativistic
space-times [2]. It appears that the presence of intrinsically geometric elec-
tromagnetic fields is ultimately bound up with the imposition of a single
condition upon the metric spinors for the γ-formalism, which bears invari-
ance under the action of the generalized Weyl gauge group [1–5]. In the case
of a spacetime which admits nowhere-vanishing Weyl spinor fields, back-
ground photons eventually interact with underlying gravitons. Nevertheless,
the corresponding coupling configurations turn out to be in both formalisms
exclusively borne by the wave equations that control the electromagnetic
propagation. Indeed, the same graviton-photon interaction prescriptions
had been obtained before in connection with a presentation of the wave
equations for the ε-formalism [6, 7]. As regards such earlier works, the main
procedure seems to have been based upon the implementation of a set of
differential operators whose definitions take up suitably contracted two-
spinor covariant commutators. However, the metric inner structure of the
γ-formalism and the intrinsic spin-density character of the fundamental ob-
jects of the ε-formalism, were both left out to the extent that no geometric
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specification was assigned to the electromagnetic wave functions allowed for.
A fairly complete elementary description of the formalisms, which has really
filled in this gap, is supplied by Ref. [2].

The present paper brings out the techniques which enable one to describe
in a concise way the physical situation being entertained. Its relevance stems
only from the significance of any works that deal adequately with algebraic
descriptions of spin structures in the realm of general relativity. As far as
our calculational procedures are concerned, the crucial point comes directly
from the construction of a pair of algebraically independent computational
rules that include utilizing a more geometric version of the covariant com-
mutators referred to previously. We will see that the implementation of
our commutators gives rise to a system of wave equations for gravitons and
geometric photons, which possess in either formalism a gauge-invariance
property associated with appropriate spinor-index configurations.

It will be expedient to take for granted at the outset all the conventions
adopted in Ref. [2], but we will occasionally emphasize some of them. We
will restrict ourselves to using only holonomic coordinates on a torsionless
curved spacetime M even though many of our expressions would still remain
applicable if anholonomic coordinates were put into practice. Without any
risk of confusion, we will utilize the same indexed symbol ▽a upon spelling
out covariant differentials in both formalisms. All wave functions shall be
considered physically as classical objects. Throughout the work, no spe-
cific energy character will be explicitly attributed to them. Hence, we will
not attempt herein to look upon any wave functions as quantum fields. The
requirement that ensures the presence of background wave functions for pho-
tons in M, amounts to taking βa 6= 0 everywhere along with the eigenvalue
equations

▽aγBC = iβaγBC , ▽aγ
BC = (−iβa)γ

BC ,

with γBC standing for one of the unprimed-index metric spinors for the
γ-formalism. Consequently, γBC must not bear covariant constancy. Its
independent component γ shows up as a world-invariant spin-scalar density
of weight +1, which enters into the prescription

γBC = γεBC , γ =| γ | exp(iΦ) .

Thus, the absolute value | γ | behaves as a real-valued world-invariant spin-
scalar density of absolute weight +1, whereas exp(iΦ) comes into play as
a composite spin-scalar density of weight +1 and absolute weight −1, which
accordingly bears the same world character as | γ |. The spinor εBC is one
of the metric spinors for the ε-formalism. It is effectively viewed as a gauge-
invariant spin-tensor density of weight −1. For the eigenvalue iβa, we have
the purely imaginary gauge-invariant expression:
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iβa = i(▽aΦ + 2Φa) ,

where the quantity Φa denotes the (common) electromagnetic potential of
some contracted γε-affine connexions on M. It will also be convenient to
call for the natural system of units wherein c = ~ = 1.

The paper has been outlined as follows. Section 2 exhibits the spin-
curvature structure of M. There, the sets of geometric formulae for both
formalisms will be built up in conjunction with one another. The relevant
calculational techniques are given in Section 3. In respect of the derivation of
our wave equations, we will work out the electromagnetic case in Section 4.
The wave equations for gravitons will be derived afterwards in Section 5.
We will make a few remarks on the paper in Section 6.

2. Spin curvature

Actually, the simplest procedure for bringing out the spin-curvature
structure of M consists first in considering some differentiable world-
invariant spin vectors ζA and ξA along with the torsion-freeness property

[▽a,▽b](ζ
CξC) = 0 , (1)

and then writing the alternative covariant-commutator configurations

[▽a,▽b]ζ
C = WabM

CζM , [▽a,▽b]ξC = −WabC
MξM . (2)

The W -object involved in (2) is one of the conjugate Infeld-van der Waerden
mixed curvature objects [1, 2] of M. In either formalism, it carries the
whole information on the respective curvature spinors in conformity with
the bivector scheme

ωABCD = ω(AB)CD +
1

2
Sa

AA′S
bA′

B WabCD, (3)

and

ωA′B′CD = ω(A′B′)CD +
1

2
Sa

AA′SbA
B′ WabCD, (4)

where the S-objects are the connecting objects of the formalism at issue1.
The ω-spinors for the γ-formalism, and their complex conjugates, are all
subject to gauge-tensor laws, whilst the former ω-spinors for the ε-formalism
appear as gauge-invariant spin-tensor densities of weight −2 and absolute
weight −2.

1 In both formalisms, the S-objects are defined so as to involve closely the symmetries
borne by Eqs. (3) and (4).
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It can be shown [2] that the information on the gravitational and electro-
magnetic contributions to the geometric structure of M is entirely encoded
into the curvature spinors of either formalism. An easy way of extracting
the individual patterns in both cases takes into consideration the splitting
prescriptions

ωABCD = ω(AB)(CD) +
1

2
ω(AB)N

NMCD, (5)

and

ωA′B′CD = ω(A′B′)(CD) +
1

2
ω(A′B′)N

NMCD, (6)

with the kernel letter M standing here as elsewhere for either γ or ε. In either
formalism, the Riemann–Christoffel curvature tensor Rabcd of M appears to
be associated to the gauge-covariant spinor [2]

RAA′BB′CC′DD′ = (MA′B′MC′D′ωAB(CD) + MABMC′D′ωA′B′(CD)) + c.c. ,
(7)

where the symbol “c.c.” denotes an overall complex-conjugate piece. The
index-pair symmetry borne by Rabcd requires the implementation of the ad-
ditional symmetries [7, 8]

ωAB(CD) = ω(CD)AB , ωA′B′(CD) = ω(CD)A′B′ , (8)

which imply that ωA′B′(CD) must be taken as an Hermitian object in both

formalisms. Hence, introducing the first-left dual configuration2

∗RAA′BB′CC′DD′ =[(−i)(MA′B′MC′D′ωAB(CD)−MABMC′D′ωA′B′(CD))]+c.c. ,
(9)

brings about the reality statement

MA′D′MBCωAB(CD) = MADMB′C′

ωA′B′(C′D′) , (10)

which is equivalent to

Im(MADMBCωAB(CD)) = 0, R = 4MADMBCωAB(CD), (11)

with R being the pertinent Ricci scalar. Furthermore, if use is made of the
four-index reduction formula [7]

ΩABCD = Ω(ABCD)−
1
4

(

MABΩM
(MCD)+MACΩM

(MBD)+MADΩM
(MBC)

)

−1
3

(

MBCΩM
A(MD) + MBDΩM

A(MC)

)

− 1
2MCDΩAB

M
M , (12)

2 Eq. (9) corresponds in both formalisms to ∗
Rabcd +

1

2
eab

mn
Rmncd, with the e-object

being one of the alternating Levi-Civita world tensors on M. It can be shown that
∗
Rab

bc
= 0 (see Refs. [5, 7]).
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we will obtain the important gravitational equality

ωAB(CD) = ω(ABCD) −
R

12
MA(CMD)B , (13)

which presumably absorbs the property MA(CMD)B = MC(AMB)D.
The electromagnetic contribution to the curvature spinors for either for-

malism amounts to the contracted pieces

i

2
ωABC

C
+ φAB ,

i

2
ωA′B′C

C
+ φA′B′ . (14)

Such φ-quantities are locally thought of as wave functions for geometric
photons, with each of which being inextricably rooted into the curvature
structure of M. We have the unambiguous Maxwell-bivector decomposition

Sa
AA′Sb

BB′Fab + 2Sa
AA′Sb

BB′ ▽[a Φb] = MABφA′B′ + MA′B′φAB , (15)

along with the relationships

ωABC
C = 2i ▽C′

(A ΦB)C′ , ωA′B′C
C = 2i ▽C

(A′ ΦB′)C . (16)

It should be stressed that the wave function φA
B and its complex conjugate

are gauge-invariant spin tensors in both formalisms.

3. Computational procedures

The key covariant-derivative-operator pattern is written out explicitly in
either formalism as [2]

Sa
AA′Sb

BB′ [▽a,▽b] = MA′B′∆AB + MAB∆A′B′ . (17)

Both the ∆-kernels carried by the right-hand side of (17) are symmet-
ric second-order differential operators which bear linearity as well as the
Leibniz-rule property. In the γ-formalism, they behave under gauge trans-
formations as formal covariant spin tensors, with one of the respective con-
jugate defining expressions appearing as

∆AB + ▽C′(A ▽C′

B) −iβC′(A▽
C′

B) = −▽C′

(A ▽B)C′ . (18)

The ε-formalism version of (18) is given by the simple configurations

∆AB = ▽C′(A▽
C′

B) , ∆A′B′ = ▽C(A′▽C

B′) , (19)
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which correspondingly behave as gauge-invariant spin-tensor densities of
weight −1 and antiweight −1, respectively. In both formalisms, the con-
travariant form of the ∆-operators is defined by

∆AB
+ MACMBD∆CD . (20)

In particular, this definition produces the γ-formalism structure

∆AB = −(▽C′(A ▽
B)
C′ +iβC′(A▽

B)
C′ ) = ▽

(A
C′ ▽

B)C′

. (21)

It follows that the rules for computing covariant and contravariant ∆-deriva-
tives in both formalisms are symbolically the same.

A glance at Eqs. (2) tells us that we can write down in each formalism
the derivative patterns

∆ABζC = ωABM
CζM , ∆A′B′ζC = ωA′B′M

CζM . (22)

It should be clear that the prescriptions for computing any ∆-derivatives of
ξA can right away be deduced from (22) by performing Leibniz expansions
of the product ζCξC . We thus obtain

∆ABξC = −ωABC
MξM , ∆A′B′ξC = −ωA′B′C

MξM , (23)

along with the complex conjugates of (22) and (23). For a complex spin-
scalar density η of weight w on M, one has the derivatives [2]

∆ABη = −wηωABC
C , ∆A′B′η = −wηωA′B′C

C . (24)

The patterns of ∆-derivatives of spin objects of arbitrary valences can be
likewise constructed by carrying out Leibniz expansions for outer products
between spin vectors. For instance,

∆AB(ηTC...D) = (∆ABη)TC...D + η∆ABTC...D , (25)

with TC...D being some differentiable spin tensor.
It is observed in Ref. [2] that whenever ∆-derivatives of arbitrary Hermi-

tian quantities are computed in both formalisms, there occurs a cancellation
of the electromagnetic pieces of (5) and (6), independently of which admissi-
ble index configurations are ascribed to the ∆-operators. Such a cancellation
also happens when we allow ∆-operators to act freely upon any unprimed or
primed spin tensor that bears the same number of covariant and contravari-
ant indices. For w < 0, it still occurs in the expansion (25) when TC...D is
taken to carry −2w indices and Imη 6= 0. A similar property obviously holds
for cases which involve outer products between contravariant spin tensors



Infeld–van der Waerden Wave Functions for Gravitons and Photons 2531

and complex spin-scalar densities carrying suitable positive weights. In fact,
these properties3 can all be established in a transparent way by implement-
ing the electromagnetic conjugacy scheme

ωABC
C = −ωABC′

C′

, ωA′B′C
C = −ωA′B′C′

C′

, (26)

along with the gravitational definitions

XABCD + ωAB(CD) , ΞCA′DB′ + ωA′B′(CD) . (27)

It will become manifest later that the completion of our computational
procedures crucially involves making use of the algebraic rules

2 ▽A′

[C ▽A]A′ = MAC� = ▽A′

D (MCA▽
D
A′) , (28)

and
2 ▽

[C
A′ ▽

A]A′

= MCA
� = ▽D

A′(MAC▽A′

D ) , (29)

where � is the (gauge-invariant) d’Alembertian operator for ▽a. We thus
have the operator splittings

▽A′

C ▽AA′ =
1

2
MAC� − ∆AC , ▽C

A′▽AA′

= ∆AC −
1

2
MAC

� . (30)

4. Wave equations for geometric photons

In both formalisms, Maxwell’s theory is written as

▽AA′

(MA′B′φAB) = 0 , ▽AA′

(MABφA′B′) = 0 . (31)

The γ-formalism unprimed-field version of (31) amounts to the eigenvalue
equations

▽AB′

φAB = iβAB′

φAB ⇔ ▽AB′φAB = (−i)βAB′φAB . (32)

In the ε-formalism, the above statements are reduced to the gauge-invariant
massless-free-field equations

▽AB′

φAB = 0 ⇔ ▽AB′φAB = 0 . (33)

Equations (32) and (33) can at once be recast into the homogeneous form

▽AB′

φA
B = 0 , (34)

3 The properties under consideration will be used so many times in Secs. 4 and 5 that
we shall no longer refer to them explicitly.
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whence, invoking the contravariant splitting exhibited by (30), yields

▽C

A′ ▽AA′

φA
B = ∆ACφA

B − 1
2 MAC

�φA
B = 0 . (35)

Because of the invariant character of φA
B, the ∆-expansion of (35) carries

in either formalism only the (symmetric) configuration

∆ABφA
C =

R

6
φBC − ω(ABCD)φAD = ∆ACφA

B . (36)

Therefore, after some trivial index manipulations, we obtain the wave equa-
tion

(

� +
R

3

)

φA
B = (−2)ΨAD

BCφC
D , (37)

with the definition
ΨABCD + ω(ABCD) . (38)

The derivation of the γ-formalism equation that controls the propagation
of φAB was carried out in Ref. [2] on the basis of the utilization of the
differential structure

2∆ACφAB − γAC
�φAB = ▽C

A′(2iβAA′

φAB) . (39)

In addition to having to account for the derivative

2∆ACφAB =
R

3
φB

C − 2ΨB
CMNφMN − 2ωAC

M
MφAB , (40)

one has to perform somewhat lengthy calculations towards accomplishing an
irreducible form of the right-hand side of (39). A much simpler derivation
procedure amounts to combining together the expansion

�(φA
MγMB) = (�φA

M )γMB + φA
M

�γMB + 2(▽hφA
M ) ▽h γMB , (41)

and the eigenvalue equation

�γBC = (−Θ(E))γBC , (42)

with Θ(E) + βhβh + i ▽h βh. We thus arrive at the spin-tensor statement

(

� − 2iβh ▽h −Θ(E) +
R

3

)

φAB = 2ΨAB
CDφCD . (43)

In a similar way, for φAB , we invoke the upper-index version of (42), namely

�γBC = (−Θ(E))γ
BC , (44)
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to obtain
(

� + 2iβh ▽h −Θ(E) +
R

3

)

φAB = 2ΨAB
CDφCD , (45)

along with the complex conjugates of (43) and (45). For the ε-formalism,
we have4

(

� +
R

3

)

φAB = 2ΨAB
CDφCD ,

(

� +
R

3

)

φAB = 2ΨAB
CDφCD . (46)

5. Wave equations for gravitons

The totally symmetric spinor defined by Eq. (38) is the Weyl spinor
field of either formalism. Usually, it enters together with its complex conju-
gate [6,7] into the spinor expression for the Weyl tensor Cabcd of M, that is
to say

Sa
AA′Sb

BB′Sc
CC′Sd

DD′Cabcd = MA′B′MC′D′ΨABCD + c.c. (47)

In the γ-formalism, we have the gauge-covariant eigenvalue equations [2]

▽AB′

ΨABCD = 2iβAB′

ΨABCD ⇔ ▽AB′ΨABCD = (−2i)βAB′ΨABCD , (48)

which can be equivalently rewritten as the vacuum field equation

▽AA′

ΨAB
CD = 0 . (49)

In both formalisms, ΨAB
CD appears as an invariant spin-tensor wave func-

tion whence the ε-formalism version of the first of Eqs. (48), for instance, is
given by

▽AB′

ΨABCD = 0 . (50)

The conjugate Ψ -spinors for both formalisms can be taken to represent lo-
cally the ten independent gravitational degrees of freedom. They appear
as massless uncharged wave functions carrying spin ±2, which constitute
dynamical states for gravitons in M.

It has become evident that the basic procedures for deriving the wave
equations for the Ψ -fields of either formalism, are essentially the same as the
ones for the electromagnetic case. Thus, for the field borne by Eq. (49), the
γ-formalism splitting is

▽E
A′ ▽AA′

ΨAB
CD = ∆AEΨAB

CD − 1
2 γAE

�ΨAB
CD = 0 . (51)

4 Needless to say, techniques similar to the ones we have employed lead to the tradi-
tional wave equation for the potential.
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The explicit computation of the ∆-derivative of (51) leads us to [2]

(

� +
R

2

)

ΨAB
CD = 6ΨMN

(CDΨEL)MNγEAγLB . (52)

Owing to the common gauge character of ΨAB
CD, we can state that the

calculation yielding (52) possesses the same form in both formalisms. An
observation regarding the gauge specification of ΨABCD as well as its four-
index feature could indeed be made at this stage, whence one can promptly
write out the ε-formalism statement

(

� +
R

2

)

ΨABCD = 6ΨMN(ABΨCD)
MN . (53)

We can derive the γ-formalism counterpart of (53) by taking into account
the combination of the differential prescriptions

� ΨABCD = �(ΨAB
LMγLCγMD) , (54a)

�(γLCγMD) =
(

−Θ(G)

)

γLCγMD , (54b)

and

2(▽aΨAB
LM ) ▽a (γLCγMD) = 4(2βhβh + iβh▽h)ΨABCD , (55)

with Θ(G) + 2(βhβh +Θ(E)). The resulting statement amounts, in effect, to
the wave equation

(

� − 4iβh ▽h −Θ(G) +
R

2

)

ΨABCD = 6ΨMN(ABΨCD)
MN . (56)

A useful metric property of the γ-formalism is that the wave equations for co-
variant and contravariant fields of the same physical kind can be immediately
attained from one another by calling upon the simultaneous interchanges5

iβh▽h ↔ (−i)βh▽h, (Θ(E), Θ(G)) ↔ (Θ(E), Θ(G)) . (57)

The wave equation for ΨABCD is thus spelt out as

(

� + 4iβh ▽h −Θ(G) +
R

2

)

ΨABCD = 6ΨMN
(ABΨCD)MN . (58)

5 This property was established for the first time in Ref. [2]. It had already been
clearly exhibited in Section 4 by the statements (42) through (45).
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6. Concluding remarks and outlook

One of the most significant aspects of the work just presented is the
fact that it has enhanced the elementary role played by geometric wave
functions for photons within the framework of general relativity. All the
couplings that should somehow be involved in any natural description of
generally relativistic spinor structures have been effectively brought out.

We believe that our differential techniques for keeping track of spinor-
index configurations can perhaps be utilized for describing at large scales
some of the physical properties of the cosmic radiation background. An
interesting point concerning the calculational features of this situation rests
upon the implementation of conformally flat space-times, and thence also
upon the strict use of identically vanishing wave functions for gravitons.

I should like to acknowledge Dr. Vladimir Buzek for his hospitality at
the Research Center for Quantum Information in Bratislava where the elab-
oration of the work shown here was actually carried out.
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