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We calculate the mass and width of the σ-meson in nuclear medium by
considering that it couples to two virtual pions and to a pair of nucleon–
antinucleon states and to particle–hole states. The mass is calculated by
using the spectral function in the Walecka model, finding that it is about
520 MeV. In addition, we have obtained the value of 700 MeV for the width
of its spectral function, showing that it has increased respect to that in
vacuum. We find that there is a reduction in the mass value compared
with that in vacuum. This result is consistent with those reported by other
authors who have used different models predicting a decreasing of the mass
as a function of the density.

PACS numbers: 14.40.–n, 14.40.Cs, 13.75.Lb, 21.65.+f

1. Introduction

The study of the properties and structure in vacuum and in nuclear mat-
ter of the scalar–isoscalar σ-meson has recently attracted growing attention
because of the role that this particle plays in some theoretical models and the
increasing experimental evidence of its existence [1,2]. It has been assumed
that the σ-meson participates as an intermediate particle in several processes
in vacuum and in hot and dense nuclear matter [3]. Particularly, this meson
is of wide interest because in theoretical models of the nuclear force, the
sigma is the responsible for the attractive part of the nuclear potential [4],
which is attributed to the exchange of a single σ-meson.

The σ-meson also plays the role of the chiral partner of the pion in the
sigma model, which is a toy model for the interaction between nucleons and
pions, with SU(2)L⊗SU(2)R symmetry [5–8]. This model was originally de-
veloped by Gell-Mann and Levy [9]. In this model the σ-meson is analogous
to the Higgs particle in the Weinberg–Salam theory [7, 9], in the sense that
the nucleon gets mass when the SU(2)L⊗SU(2)R symmetry is spontaneously
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broken. In addition, in chiral perturbation theory the σ-meson enters as an
essential part to adjust the theory to the experimental data [10], and in the
interactions between mesons, the σ appears as a resonance, showing up as
a pole in the T -matrix [11,12]. In [6,13,14] they propose some experimental
possibilities for investigating the behavior of the σ-meson in hot and in dense
nuclear matter.

However, the existence and the composition of the σ-meson as a qq-meson
or as a ππ resonance [13, 15, 16], is a subject of controversy. We concluded
in a recent work that it can be considered as a two pion resonance [17].

For describing the nuclear matter we use in this work the Walecka model,
which is a renormalizable relativistic quantum field theory where the degrees
of freedom are nucleons that interact through the exchange of scalar meson,
the sigma, and vector mesons, the omega.

In this work we study the scalar σ-meson in nuclear medium when the
meson couples to two nucleons through a Yukawa-type coupling. The in-
teraction of the meson with nucleons includes interactions with the Fermi
Sea producing nucleon–hole states and interactions with the Dirac Sea pro-
ducing nucleon–antinucleon states [4,18]. The interaction of sigma with two
virtual pions is also included in the calculations.

We define the mass and width in terms of the spectral function. Our
definition of mass for a particle is the magnitude |k| of its four-momentum
for which the particle spectral function S(k) gets its maximum. In this work
we find a closed expression for the regularized self-energy function of the
σ-meson and then we obtain an exact analytical function for its spectral
function. The σ-meson self-energy is calculated in the one loop level and
the propagator is computed by summing over ring diagrams, in the so called
Random Phase Approximation (RPA) [19]. To carry out the summation we
use the Dyson’s equation. The real part of the self-energy in the pion–sigma
interaction is ultraviolet divergent and it is regularized by using a simple
subtraction dispersion relation,which preserves the symmetries of the theory.

2. Formalism

There are several ways of defining and determining theoretically the mass
and the width of unstable particles. Some authors, as in [5, 9, 10, 20, 21]
make use of the spectral function to define a mass of a particle. In [22, 23]
the S-matrix formalism is used to determine the mass and the width of
a meson. On the other hand, authors as in [8,13–15,24–27], define the mass
of a particle as the pole in its complete propagator.

The definition of the mass of a particle in terms of its spectral function, is
used extensively in the literature, [20,28,29] and it is well established. This
is the definition that we will use in this work for calculating the σ-meson
mass in vacuum and in nuclear matter.
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In order to evaluate the mass of the σ-meson we need, firstly, to calculate
its dressed propagator i∆(k) where k is the four-momentum of the propa-
gating meson. The expression for the dressed σ-meson propagator i∆(k) is
obtained from the Dyson equation [4, 18]

i∆(k) = i∆0(k) + i∆0(k) [−iΣ(k)] i∆(k) , (1)

where i∆0(k) = i/(k2 − (m0
σ)2 + iǫ) is the free σ-meson propagator, with

m0
σ and Σ(k) being the bare mass and the self-energy of σ, respectively.

The self-energy Σ(k) contains all the information about the interactions of
the meson with the quantum vacuum and nuclear matter, so, in order to
determine the self energy Σ(k) we must specify the dynamical content of
our model.

The Lagrangian density for the Walecka model [4] is

L = Ψ
[

γµ(i∂µ − gvV
µ) − (M − gsΦ)

]

Ψ +
1

2

(

∂µΦ∂µΦ − (m0
σ)2

)

Φ2

− 1

4
FµνFµν +

1

2
m2

vVµV µ + δL , (2)

where Ψ is the nucleon field with mass M , V µ is the neutral vector meson
field (ω) with mass mv, Fµν = ∂µV ν − ∂νV µ is the tensor field of the
vector meson, Φ is the scalar (σ)-meson field with the bare mass m0

σ; gs

and gv are the coupling constants, and finally δL contains renormalization
counterterms.

The interaction Lagrangian density which describes the σ−π dynamics,
[30] is given by

Lσππ =
1

2
gσππ mπ

−→π · −→π Φ , (3)

where −→π = (π1, π2, π3) represents the Cartesian components of the pseu-
doscalar π-meson field, Φ is the scalar σ-meson field, gσππ is the coupling
constant, and mπ is the mass of the π-meson.

The influence of the interaction of σ-mesons with virtual pions and nu-
cleons in nuclear matter is introduced through the modification of the free
propagator in the one loop approximation; this is shown graphically in the
Fig. 1. The dashed lines represent the σ-meson, the dotted lines represent
the pion field and the continuum lines are associated to the field of nucle-
ons. We will calculate the full propagator in the chain approximation, which
consists in an infinite summation of the one loop self-energy diagrams [26].
The diagrammatical representation of the modified propagator is showed in
Fig. 2, and the analytical expression is given by i∆(k) in Eq. (1).
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Fig. 1. Sigma meson self-energy diagram. The dashed lines represent the sigma

meson, the dotted lines the pion field and the continuous line represents the nucleon

field.

Fig. 2. Sigma meson full propagator in the chain approximation. The left side

represents the dressed sigma propagator and the right side is the diagrammatical

representation of the chain approximation to the dressed propagator.

The solution for ∆(k) in the Dyson’s equation (1) is given by

∆(k) =
1

[∆0(k)]−1 − Σ(k)
=

1

k2 − (m0
σ)2 − Σ(k)

. (4)

On the other hand, the analytical expression for the self-energy Σ(k), is
given by [5, 30]

Σ(k) = Σσπ(k) + ΣσN (k) ,

where

−iΣσπ(k) =
3

2
g2
σππm2

π

∫

d4q

(2π)4
1

q2 − m2
π + iǫ

1

(q − k)2 − m2
π + iǫ

, (5)

iΣσN (k) = −ig2
s

∫

d4q

(2π)4
Tr [G(q)G(q + k)] . (6)
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The coefficient 3/2 for the pion loop comes from the three isospin states
and the permutation symmetry factor [30], and G(q) is the full nucleon
propagator [4]

G(q) = (γµq∗µ+M∗)

[

1

q∗2−M∗2+iǫ
+

iπ

E∗(q)
δ(q0−E∗(q)Θ(kF−|−→q |)

]

,

G(q) = GF(q) + GD(q) , (7)

where q∗µ ≡
(

q0 − gvV
0,−→q

)

, E∗(q) ≡
√−→q 2 + M∗2, kF is the Fermi mo-

mentum, and M∗ is the nucleon effective mass.

2.1. Calculation of Σ(k) in vacuum

Carrying out the integration in Eq. (5) with respect to q0 by using the
Cauchy residue theorem, integrating in the q0 complex plane, we obtain

Σ(k) = − 3

8π2
g2
σππm2

π

∞
∫

−∞

−→q 2d |−→q |
√

−→q 2 + m2
π

[

4(−→q 2 + m2
π) − k2

0 − iǫ
]

. (8)

Separating this expression in the real and imaginary parts and integrat-
ing the imaginary part, we obtain

ImΣσπ(k) =
−3g2

σππm2
π

32π

(

1 − 4m2
π

k2

)

1

2

(9)

for k2 > 4m2
π and zero for k2 < 4m2

π. We can see the characteristic threshold
value k2 > 4m2

π for the production of real π–pi pairs from the σ-field.
On the other hand, the real part of Σσπ(k) is ultraviolet divergent, and

therefore, it needs to be regularized. The regularization of ReΣσπ(k) will be
done by using a simple subtraction dispersion relation [31], which is given
by the expression

Σ(t) =
t

π

∞
∫

0

ImΣσπ(t′)

t′(t′ − t) − iǫ
dt′ . (10)

For the imaginary part in the integrand taking from Eq. (9). On the other
hand the real part of the integral in Eq. (10) is simply Σσπ(t)−Σσπ(0), being
convergent [31].

Now let us write the identity

ReΣσπ(k) = ReΣσπ(k) − ReΣσπ(0) + ReΣσπ(0) , (11)

where ReΣσπ(0) is an infinite quantity that cancel the infinite terms of
ReΣσπ(k). We define now the finite quantity ReΣR

σπ(k) = ReΣσπ(k) −
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ReΣσπ(0) as the regularized real part of the σ-meson self-energy, and the
renormalized mass mσ through m2

σ = (m0
σ)2 + ReΣσπ(0). With this def-

inition we take mσ = 600MeV as the experimental value of the mass for
sigma.

From Eq. (10), we obtain for the real part

ReΣR
σπ(k) =

−3g2
σππm2

πk2

32π2
P

∞
∫

4m2
π

(

1 − 4m2
π

x′

)
1

2

x′(x′ − k2)
dx′ . (12)

This integral can be carried out directly giving the result

ReΣR
σπ(k) =

−3g2
σππm2

π

16π2
(1 + cI0) , (13)

where c≡1−(4m2
π)/k2 and

I0 =
1

2
√

c
ln |(

√
c − 1)/(

√
c + 1)|

with c > 0.
The expression for the renormalized self-energy ΣR

σπ(k) = ReΣR
σπ(k) +

iImΣσπ(k), constructed from Eqs. (9) and (13), is part of the main result of
this work.

2.2. Calculation of Σ(k) in nuclear matter

2.2.1. Vacuum fluctuations (Dirac Sea contribution)

The term GF(q) in the nucleon propagator, which is a divergent quan-
tity, contains the nucleon–antinucleon contribution in the propagator G(q).
Subtracting the appropriate counterterms CTC [32] we made this term finite

ΣR
σN (k) = ΣRF

σN (k) + ΣD
σN (k) , (14)

ΣRF
σN (k) = ΣF

σN (k) − CTC . (15)

In Eqs. (14)–(15) superscript R means renormalized.
Taking in Eq. (6) the terms that do not depend on the density, we obtain

ΣF
σN (k) = −8ig2

s

∫

d4q

(2π)4
q2 + q · k + M∗2

[q2 − M∗2 + iǫ] [(q + k)2 − M∗2 + iǫ]
. (16)

Now we use in Eq. (16) the Feynman parametrization technique and then
the dimensional regularization method [33] to isolate the divergent terms.
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After some algebra we get to

ΣF
σN (k)=

6g2
s

4π2

(

2

ǫ
−γE

)

1
∫

0

dz
[

M∗2−k2z(1 − z)
]

[

1− ǫ

2
ln(M∗2−k2z(1−z)

]

.

(17)
With the purpose to make Eq. (17) finite, we subtract four counterterms

[4, 5, 32]. Each counterterm is evaluated in vacuum, where M∗ = M and
kF =0. Besides, each counterterm is evaluated in an appropriate value of k2

corresponding to our renormalization point. Our choice was the same of [32]

k2 = 0 . (18)

The self-energy function resulting from the coupling of the sigma with
nucleon–antinucleon states ΣF

σN is a divergent quantity. We isolate the diver-
gences by dimensional regularization finding that we need four counterterms
in order to cancel these divergences. Adding the counterterms Lagrangian
δL given by

δL =
1

2!
α2Φ

2 +
1

3!
α3Φ

3 +
1

4!
α4Φ

4 +
1

2
β∂µΦ∂µΦ .

And subtracting the contribution of these counterterms from ΣF
σN , we

make this quantity convergent. The result is written as

ΣRF
σN (k) = ΣF

σN (k) − α2 − βk2 − α3Φ0 −
1

2
α4Φ

2
0 ,

where

α2 = ΣF
σN |k2=0,M∗=M ,

β =
∂

∂k2
ΣF

σN |k2=0,M∗=M ,

α3Φ0 = (M∗ − M)
∂

∂M∗ΣF
σN |k2=0,M∗=M ,

1

2
α4Φ

2
0 =

1

2
(M∗ − M)2

∂2

∂M∗2 ΣF
σN |k2=0,M∗=M .

Then, the renormalized self-energy ΣF
σN (k) takes the form:

ΣF
σN (k) =

3g2
s

4π2

{

M2+M∗2−4MM∗− k2

6
−M∗2 ln

M∗2

M2
− k2

6
ln

M∗2

M2

+
4

9
k2 − a

[

2M∗2 − k2

(

1

3
− 1

6
a

)]

1
∫

0

dv

v2 − a

}

, (19)
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with a ≡ 1 − (4M∗2)/k2 and the integral

1
∫

0

dv

v2 − a
=















1
2
√

a
ln

√
a−1√
a+1

, for k2 < 0 ,
1√
−a

arctan( 1√
−a

) , for 0 < k < 4M∗2 ,

1
2
√

a
ln

√
a−1√
a+1

+ iπ
2
√

a
, for k2 > 4M∗2 .

2.2.2. Density-dependent term

Now we calculate the density dependent term of Eq. (6)

ΣD
σN (k) = −8ig2

s

∫

d4q

(2π)4
[

q2 + q · k + M∗2]

×
{

δ[(q0 − k0) − E∗(q + k)]Θ(kF − |−→q +
−→
k |)

[q2 − M∗2] E∗(q + k)

× δ[(q0 − k0) − E∗(q)]Θ(kF − |−→q |)
[(q + k)2 − M∗2]E∗(q)

}

. (20)

Carrying out the integration of ΣD
σN (k) respect to q0 we obtain

ΣD
σN (k) = −8ig2

s

∫

d3q

(2π)4

{

Θ(kF−|−→q |)[(q−k)2+(q − k) · k + M∗2]

[−2q · k − k2]E∗(q)

+
Θ(kF − |−→q |)

[2q · k + k2] E∗(q)

}

. (21)

Simplifying Eq. (21), and taking the condition (k2)2 ≪ 4(q · k)2 for low
energies [18], we find

ΣD
σN (k) = −8ig2

s

∫

d3q

(2π)4
[k2 + (q − k) − M∗2]

[−4(q · k)2 − k2] E∗(q)
Θ(kF − |−→q |) . (22)

Taking
−→
k in the z axis direction, this means kµ = (k0, 0, 0, k(3)), E∗(q) ≡

√−→q 2 + M∗2, and defining χ ≡ − sin θdθ. The Eq. (22), following the nota-
tion in [18], can be written as

ΣD
σN (k) =

g2
skFM∗2

π2εF

{

1 +
1

2

1

1 − v2
F

− 3

4vF
ln

∣

∣

∣

∣

1 + vF

1 − vF

∣

∣

∣

∣

+ Φ

(

C0

vF

)}

, (23)

where

Φ

(

C0

vF

)

= −1 +
1

2

C0

vF
ln

∣

∣

∣

∣

C0 + vF

C0 − vF

∣

∣

∣

∣

, C0 ≡ k0

∣

∣

∣

−→
k

∣

∣

∣

, εF ≡
√

k2
F + M∗2 ,

and vF = kF/εF.
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3. Results

The propagator given by Eq. (4), takes the form

∆(k) =
1

k2 − m2
σ − ReΣR(k2) − i ImΣ(k2)

, (24)

where
Σ(k) = Σσπ(k) + ΣσN (k) , (25)

and

ReΣR(k) = ReΣR
σπ(k) + ReΣR

σN (k) ,

ImΣ(k) = ImΣσπ(k) ,

being ΣσN (k) the sum of Eqs. (19) and (23).
From the definition of the spectral function S(k) given above, we have

S(k) = − 2πImΣ(k)

[k2 − m2
σ − ReΣR(k)]

2
+ [ImΣ(k)]2

. (26)

Substituting ImΣ(k) and ReΣR(k) from Eqs. (9), (13), (19) and (23)
into Eq. (26), we obtain a closed expression for the spectral function. The
parameters in Eq. (26) are the reported mσ value for the σ-meson mass,
which we take as 600MeV, and the bare σππ coupling constant g2

σππ =
12.8 [30].

The spectral function of the sigma meson has been plotted in Fig. 3 at
normal nuclear matter density. The nucleon mass was fixed at their physical
value M = 939MeV. The effective nucleon mass M∗ is the appropriate value
at nuclear-matter saturation density. This relation was taken as M∗/M =
0.730, and the bare σN coupling constant g2

s = 54.289 [26].

Fig. 3. Spectral function of the sigma meson.
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4. Conclusion

As we can see, the maximum of S(k) is gotten at k = 520MeV at normal
nuclear matter density. This value is in agreement with that reported by
other authors, using different models as the Nambu Jona-Lasinio [34,35] and
the chiral perturbation theory [11,12], which predict a decreasing of the mass
of the sigma meson when it is in nuclear matter. This result is interpreted
as a partial restoration of chiral symmetry [35–37]. On the other hand, we
obtained the value of 700MeV for the width, taking this at one half of the
maximum value of the spectral function, showing that it has increased with
respect to that in vacuum [17].
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