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We present a framework for fitting the parton density functions ob-
tained from the Monte Carlo solutions of the QCD evolution equations
of various types to the F2 data. To speed up the fitting it is enough to
perform the Monte Carlo simulation only once. The actual parton den-
sity functions as functions of the fitting parameters are then reconstructed
by fast one-dimensional numerical integration. Such a tool is necessary
in order to determine initial values for parton density functions in case of
non-DGLAP Monte Carlo evolutions.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction

In a series of recent papers [1–7], co-authored by one of us (M.S.), it
has been demonstrated that the Monte Carlo (MC) simulations can be used
to obtain precise solutions of the evolution equations in QCD [8]. MC is
a mathematically rigorous method, and with the help of todays computers
it is feasible to reach the precision of the order of 10−4 within a reasonable
computing time. Such MC algorithms not only provide the evolution of the
inclusive parton density functions (PDFs), but also emulate the whole ex-
clusive process of multiple emission of partons described by the evolution
equations. The evolution starts from a certain initial value Q0 of the evo-
lution variable Q and then develops up to the scale of the hard process.
Such a cascade of emissions, described originally by two-dimensional evo-
lution in x and Q space, can be extended into the full-scale parton shower
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MC program in which all four-momenta of the emitted partons are recon-
structed. This in turn allows for inclusion of the complicated detector ef-
fects. In order to do that one has to specify the type of evolution, the
meaning of evolution variables and the initial values of PDFs at Q0 for that
particular evolution setup. The shape of the PDFs at Q0 cannot be ob-
tained by means of perturbative calculations due to collinear singularities
arising from non-perturbative, long-distance sector of QCD, cf. e.g. [9, 10].
On the other hand the non-perturbative methods, like lattice gauge theory,
are still not precise enough as compared with the typical accuracy required
by the experiments. Therefore the common way of proceeding is to deter-
mine the shape of PDFs at Q0 by fitting structure functions Fi calculated
from these PDFs to the experimental data. Such a fitting procedures have
been extensively studied by various groups [11–18] and others; for a recent
overview see [19]. Numerous effects and approximation levels have been
included in these analyzes: perturbative higher orders (LO/NLO/NNLO),
heavy quark effects (zero-mass/general-mass variable-flavor-number; fixed-
flavor-number) or non-perturbative higher twist effects. Also the treatment
of experimental errors varies in the level of sophistication from simple Gaus-
sian errors to complicated correlated ones.

In the earlier mentioned series of papers a family of new MC algorithms
has been presented. Initially these algorithms [1–4] solved DGLAP-type
equations, including some of the listed above effects (NLO for example) [7].
Later on the non-DGLAP evolutions have also been simulated. Namely, by
means of clever choice of argument of the running coupling one can resum
some of the logarithmically enhanced higher order terms or include some of
the low-x effects [20–24]. In practical terms the modified argument is of the
form Q(1 − z), Q(1 − z)1/2/z, or in general Qf(z). In the above mentioned
series of MC algorithms the scheme with α(Q(1 − z)) has been chosen and
implemented [25]. In the next step the CCFM-like evolution [26] with α
being the function of the true transverse momentum kT of emitted gluons,
with non-Sudakov form-factor and with ordering in rapidity has also been
implemented in these MC algorithms [27].

The PDF fits to such non-DGLAP schemes are difficult to find in the
literature [28]. For that reason it is important for us that in parallel with the
MC parton shower algorithms we develop a framework that would enable us
to perform fits of PDFs to experimental data.

In this paper we present such a framework, suitable for fitting PDFs cal-
culated by MC codes with any general form of α that depends on Q and
z variables. The requirement that the fitting procedure uses MC code to
solve evolution equations is a nontrivial one because MC codes are much
slower than the codes based on other numerical methods. In consequence
it is very difficult to repeat the evolution many times for various input pa-
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rameters during fitting. To overcome this problem, we based our method on
the factorizability of the evolution equations which allows us to write their
solutions in a form of a convolution of a boundary condition which depends
on the fitting parameters and the universal Green-function-type solution of
the evolution equations independent of the fitting parameters.

It should be mentioned here that the use of MC simulation as the basis
of fitting is not restricted to structure functions but can be used for other
observables as well. In such a general case MC has the unique feature of
allowing for inclusion of the detector effects into the fitting procedures. How
much of these effects can be included in an efficient way (without excessive
number of long generations) depends on the observable.

This paper is organized as follows. In the next section we show how the
construction of PDFs is done, based on the numerical convolution of results
of MC simulation. In Section 3 we discuss the actual fitting procedure for
F2 at LO and NLO levels. Section 4 contains concluding remarks.

2. Construction of PDFs

We begin by showing how the solution of evolution equations can be
decomposed into two parts: the universal one, of the Green-function type,
describing evolution and the actual initial condition.

The evolution equations are of the standard form

∂tDA(x, t) = PAB(x, t) ⊗x DB(x, t) , (1)

DA(x, t = 0) = D0
A

(

x, αA
1 , . . . , αA

k

)

. (2)

DA(x, t) denotes PDF of the type A with A = qi, q̄i, g; i = 1. . . . , nf . and t
is the evolution time. The splitting kernels PAB(x, t) include also coupling
constants and the convolution symbol ⊗x stands for

(

f(x, α) ⊗x g(x, β)
)

(x) =

1
∫

0

dydzδ(x − yz)f(y, α)g(z, β) . (3)

The actual decomposition of the solution DA(x, t) of Eq. (1) can be written
as follows

DA(x, t) = Dδ
AB(x, t) ⊗x D0

B

(

x, αB
1 , . . . , αB

k

)

, (4)

where

∂tD
δ
AB(x, t) = PAC(x, t) ⊗x Dδ

CB(x, t) , (5)

Dδ
AB(x, 0) = δABδ(1 − x) . (6)
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It is easy to verify that, by virtue of Eq. (5), the DA of Eq. (4) fulfills Eq. (1)
and, due to (6), it fulfills condition (2).

The decomposition (4) allows us now to perform the time-consuming
MC evolution only once for each of 2nf + 1 columns of Dδ

AB matrix, i.e.

for B = qi, q̄i, g, starting in each case from the appropriate “unit” initial
condition (6). The entire dependence on the initial parameters is hidden
in the functions D0

B(x, αB
1 , . . . , αB

k ). In order to obtain the actual value of
DA(x, t), needed for the fitting procedure, it is enough to perform only fast
one-dimensional numerical integration1. To achieve high precision (10−3) of
this integration we employed a few technical tricks. First, the results of MC
calculation, which have a form of a histogram of a finite binning (typically
100 bins), have been parameterized by a series of second order polynomial
functions. Secondly, because in the MC run we use logarithmic scale for
x-variable, the value of Dδ at x close to 1 is not known exactly and we
extrapolate it from the neighboring bins. We could in principle use linear
scale in that region in MC and generate the missing points. However, it
turns out that extrapolation is sufficient for the precision of 10−3 within the
range of x < 0.5 and for the precision of 10−2 for x > 0.5.

Let us now present technical tests of this integration procedure. For this
purpose we use gluon (G) and singlet (Σ) PDFs

DΣ =
∑

i

(

Dqi
+ Dq̄i

)

(7)

which can be regarded as a two-dimensional system

DG(x, t) = Dδ
GG(x, t) ⊗ D0

G(x) + Dδ
GΣ(x, t) ⊗ D0

Σ(x) ,

DΣ(x, t) = Dδ
ΣG(x, t) ⊗ D0

G(x) + Dδ
ΣΣ(x, t) ⊗ D0

Σ(x) . (8)

We took the following initial distributions for the evolution

D0
G(x) = 1.908x−1.2(1 − x)5.0 ,

D0
sea(x) = 0.6733x−1.2(1 − x)7.0 ,

D0
uval

(x) = 2.187x−0.5(1 − x)3.0 ,

D0
dval

(x) = 1.230x−0.5(1 − x)4.0 . (9)

1 It should be noted here, however, that such a scheme does not allow fitting ΛQCD

because in general case ΛQCD enters into D
δ

AB function. That would violate the
universality of D

δ

AB . This problem will be addressed elsewhere [29].
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Fig. 1. Top frame: gluon PDF generated directly from the initial distributions

(9) — dotted red line and from the convolution (8) — solid black line. Bottom

frame: their ratio minus 1. Evolution from Q = 1 GeV to Q = 100 GeV, LO type.

Statistical errors correspond to direct evolution (9).

and

D0
u(x) = D0

uval
(x) +

1

6
D0

sea(x) ,

D0
d(x) = D0

dval
(x) +

1

6
D0

sea(x) ,

D0
s(x) = D0

ū(x) = D0
d̄(x) = D0

s̄(x) =
1

6
D0

sea(x) ,

D0
Σ(x) = D0

sea(x) + D0
uval

(x) + D0
dval

(x) . (10)
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Fig. 2. Top frame: singlet PDF generated directly from the initial distributions

(9) — dotted red line and from the convolution (8) — solid black line. Bottom

frame: their ratio minus 1. Evolution from Q = 1 GeV to Q = 100 GeV, LO type.

Statistical errors correspond to direct evolution (9).

In the upper frames of figures 1 and 2 we show respectively the G and
Σ PDFs, generated by MC code EvolFMC [30], directly from the initial
distributions (9) and from the convolutions (8). The curves are almost in-
distinguishable. In the lower frames we plot their ratio (minus 1). The Dδ

functions are also generated by EvolFMC. The evolution is of the LO type
and carried from Q = 1 GeV to Q = 100 GeV. The errors shown are purely
statistical and correspond only to the direct MC generation from the initial
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distributions (9). From the figures we see that the agreement is well within
the 10−3, except for the very high values of log10 x > −0.25 in the Σ case,
where it drops to 10−2, as discussed earlier. Increase of errors for high x is
statistical: PDFs decrease sharply and number of generated MC events is
much lower in that region. Similar plots for the case of NLO evolution are
shown in figures 3 and 4. As in the LO case the agreement is well within
the 10−3, except for the very high values of log10 x > −0.25 in the Σ case.
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Fig. 3. Top frame: gluon PDF generated directly from the initial distributions (9)

— dotted red line and from the convolution (8) — solid black line. Bottom frame:

their ratio minus 1. Evolution from Q = 1 GeV to Q = 100 GeV, NLO type.

Statistical errors correspond to direct evolution (9).
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Fig. 4. Top frame: singlet PDF generated directly from the initial distributions

(9) — dotted red line and from the convolution (8) — solid black line. Bottom

frame: their ratio minus 1. Evolution from Q = 1 GeV to Q = 100 GeV, NLO

type. Statistical errors correspond to direct evolution (9).

3. Fitting procedure

Having prepared the efficient method of calculating PDFs as functions of
initial parameters we proceed to the fitting. To this end we use the program
MINUIT [31] and perform the least-squares fit by minimizing the chi-square
function. As a first step we will do fits at the level of PDFs themselves.
This exercise will mainly check correctness of the procedure but it will also
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provide some interesting comparisons of different evolution types. As before,
let us consider two-dimensional system of PDFs of Eq. (8) for G and Σ and
define the chi-square function as

χ2(αG
1 , . . . , αG

k ;αΣ
1 , . . . , αΣ

k ) =
∑

A=G,Σ

∑

i

(DX
A (xi, t, α

A
1 , . . . , αA

k )−DY
A(xi, t))

2

eY
A(xi, t)2

,

(11)
where the time t is fixed. The “data points” are generated by EvolFMC
according to some evolution type Y . The fitted functions DX

A are calculated
according to Eq. (8) with Dδ generated also by EvolFMC. If both evolutions
X and Y are the same (i.e. X = Y ) we plainly test the fitting procedure.
We show such tests for the LO and NLO evolutions. The initial densities
are parameterized as

αA
1 x−αA

2 (1 − x)α
A
3 ; A = G,u, d, sea. (12)

In Tables I and II we compare the values of αA
i used for generation (I) with

the ones obtained from fits (F) for the cases of LO and NLO evolutions
respectively. As we can see, the agreement is very good in both cases.

TABLE I

Comparison of fitted values of coefficients with the original ones used for generation

for the LO evolution at Q = 100 GeV. I: values used for generation, F: fitted values.

The initial distributions are αA
1
x−α

A

2 (1 − x)α
A

3 .

α
G
1 α

G
2 α

G
3 α

u
1 α

u
2 α

u
3 α

d
1 α

d
2 α

d
3 α

sea
1 α

sea
2 α

sea
3

I 1.908 1.200 5.000 2.187 0.500 3.000 1.230 0.500 4.000 0.67 1.200 7.00

F 1.907 1.199 4.994 2.186 0.501 3.008 1.229 0.505 3.991 0.68 1.199 7.06

TABLE II

Comparison of fitted values of coefficients with the original ones used for generation
for the NLO evolution at Q = 100 GeV. I: values used for generation, F: fitted

values. The initial distributions are αA
1
x−α

A

2 (1 − x)α
A

3 .

α
G
1 α

G
2 α

G
3 α

u
1 α

u
2 α

u
3 α

d
1 α

d
2 α

d
3 α

sea
1 α

sea
2 α

sea
3

I 1.908 1.200 5.000 2.187 0.500 3.000 1.230 0.500 4.000 0.67 1.200 7.00

F 1.905 1.200 5.002 2.187 0.503 3.013 1.230 0.513 3.997 0.67 1.198 7.09
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As a next step we fit a different type of evolution than the one used to
prepare “data points”. More specifically, we use again the same setup of PDFs
for G and Σ, Eq. (8), and the same initial condition (9). We evolve PDFs
with the z-dependent coupling constant of the form αS = αS(Q(1−z)). For
the fit however we use the coupling independent of z: αS = αS(Q). This
way we can asses how big the change of initial conditions must be in order
to compensate for different evolution scheme at a given value of Q. In the
Table III we show results for the case of LO evolution with αS(Q(1 − z))
used for generation, which is then fitted with NLO evolution with αS(Q).
The evolution runs from Q = 1 GeV up to Q = 100 GeV. We see from the
table that the changes in some of the parameters are quite big. Therefore
even such a very simple exercise suggests that the NLO effects not included
through modified argument of αS significantly change the evolution and
one should be careful with choosing proper initial distributions for a given
evolution type.

TABLE III

Fitting different evolutions: Generated LO DGLAP with α(Q(1 − z)), fitted NLO
DGLAP with α(Q). Evolution from Q = 1 GeV to Q = 100 GeV. I — values used

for generation, F — fitted values. The initial distributions are αA
1
x−α

A

2 (1 − x)α
A

3 .

α
G
1 α

G
2 α

G
3 α

u
1 α

u
2 α

u
3 α

d
1 α

d
2 α

d
3 α

sea
1 α

sea
2 α

sea
3

I 1.908 1.200 5.000 2.187 0.500 3.000 1.230 0.500 4.000 0.67 1.200 7.00

F 1.775 1.197 4.657 1.974 0.341 2.736 0.437 0.142 2.523 0.601 1.471 7.232

Finally, we turn to the F2. In the LO approximation F2 is a linear
combination of PDFs

FLO
2 (x, t) =

∑

A=q,q̄

1
∫

0

dξDA(ξ, t)xe2
Aδ(x − ξ) =

∑

A=q,q̄

DA(x, t)xe2
A . (13)

Apart from computing PDFs from Eq. (4) and constructing F2 directly from
Eq. (13) we have also used rearranged form of Eq. (13). Inserting represen-
tation (4) of DA into Eq. (13) we obtain

FLO
2 (x, t, ~α1, . . . , ~αk) = x

∑

B

(

∑

A=q,q̄

e2
ADδ

AB(x, t)

)

⊗
x D0

B

(

x, αB
1 , . . . , αB

k

)

.

(14)

Eq. (14) is faster to compute numerically due to smaller number of convo-
lutions, especially if one takes into account further symmetries of Dδ

AB for
various combinations of indices A and B.
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The NLO case is more complicated because coefficient functions become
nontrivial. In the MS scheme one finds

FNLO
2 (x, t) = x

∑

A=q,q̄

e2
ADA(x, t) + ∆F2 , (15)

∆F2 = x
∑

A=q,q̄

e2
ADA(x, t) ⊗x αs

2π
CMS

A (x)

+ x
∑

A=q,q̄

e2
ADg(x, t) ⊗x αS

2π
CMS

g (x) , (16)

where [32]

CMS
q = CF

(

2

(

ln(1−z)

1−z

)

+

−
3

2

(

1

1−z

)

+

−(1+z) ln(1−z)−
1+z2

1−z
ln(z)

+ 3 + 2z −

(

π2

3
+

9

2

)

δ(1 − z)

)

(17)

= CF

(

1 + z2

1 − z

(

ln
1 − z

z
−

3

4

)

+
1

4
(9 + 5z)

)

+

, (18)

CMS
g = TR

(

(

(1 − z)2 + z2)
)

ln

(

1 − z

z

)

− 8z2 + 8z − 1

)

. (19)

The plus distribution is defined in a usual way

[f(z)]+ = f(z) − δ(1 − z)

1
∫

0

f(x)dx . (20)

The only new components, as compared to the LO case, are the convolutions
of the PDFs DA (stored in the form of histograms) with the coefficient func-

tions CMS(x). The convolutions have been done numerically. In the quark
case we used representation (18) and we applied directly the definition (20)
of the plus distribution.

The test of the convolution is presented in Fig. 5 where we show the
correction ∆F2 obtained by means of double convolutions (8) and (15) from
Dδ functions generated by EvolFMC. As a reference we used the numerical
results obtained from the QCDNum16 code [33]. The two curves are indistin-
guishable (upper frame) and their difference is shown in the lower frame.
Note that the difference is not normalized due to the presence of zeroes of
∆F2 at high x. As one can see the agreement is excellent — at the level of
10−5 in absolute units.
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Fig. 5. Top frame: ∆F2 from numerical convolution of EvolFMC results (red)

and from QCDNum16 (black). Bottom frame: their difference (note factor 10−3);

Q = 100 GeV.

To proceed with the fitting of F2 we define chi-square function to be
minimized by MINUIT:

χ2(~α1, . . . , ~αk) =
∑

n

∑

i

(

F2(xi, tn, ~α1, . . . , ~αk) − F2exp(xi, tn)
)2

eF2exp
(xi, tn)2

. (21)

In order to test the whole procedure of constructing and fitting F2 we gen-
erated a sample of “data points” of F2 with the help of QCDNum16 code. As
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starting distributions we used again the same set of Eqs. (9)–(10). Then
we performed fits to these F2 “data points”. The results of this comparison
are shown in Tables IV and V for the case of LO and NLO evolutions re-
spectively. As one can see the agreement is excellent in both cases. This is
an important test of the procedure. It shows in particular, that the small
inaccuracy in reconstruction of the PDFs for very high values of x discussed
earlier in this section indeed has no influence on the accuracy of the whole
procedure.

TABLE IV

Fitting two structure functions: F2 obtained from EvolFMC to F2 from QCDNum16.
I — values used for generation in QCDNum16, F — fitted values. LO-type evolution.

The initial distributions are of the form αA
1
x−α

A

2 (1 − x)α
A

3 .

α
G
1 α

G
2 α

G
3 α

u
1 α

u
2 α

u
3 α

d
1 α

d
2 α

d
3 α

sea
1 α

sea
2 α

sea
3

I 1.908 1.200 5.000 2.187 0.500 3.000 1.230 0.500 4.000 0.67 1.200 7.00

F 1.908 1.199 4.988 2.187 0.502 3.07 1.241 0.507 4.08 0.674 1.200 6.944

TABLE V

Fitting two structure functions: F2 obtained from EvolFMC to F2 from QCDNum16.
I — values used for generation in QCDNum16, F — fitted values. NLO-type evolution.

The initial distributions are of the form αA
1
x−α

A

2 (1 − x)α
A

3 .

α
G
1 α

G
2 α

G
3 α

u
1 α

u
2 α

u
3 α

d
1 α

d
2 α

d
3 α

sea
1 α

sea
2 α

sea
3

I 1.908 1.200 5.000 2.187 0.500 3.000 1.230 0.500 4.000 0.67 1.200 7.00

F 1.908 1.199 4.979 2.196 0.503 3.06 1.25 0.51 4.04 0.675 1.200 6.86

4. Summary and outlook

In this paper we presented a scheme of fitting the PDFs generated by
the MC to the F2 experimental data. The main technical difficulty in using
the MC techniques to solve evolution equations is the slowness of the sim-
ulation. To overcome this problem we based the fitting procedure on the
factorizability of the evolution equations. This way the MC is used only
once to generate a universal evolution operator. The initial conditions are
then taken into account by means of single numerical integration. We have
shown in a series of numerical tests, both at the level of PDFs as well as F2,
in LO and NLO approximation, that such a procedure is indeed very fast
and numerically precise.
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The main limitation of this procedure is the inability of fitting the value
of ΛQCD. Contrary to the other parameters the dependence on ΛQCD, which
enters through the coupling constant, cannot be in the general case factored
out in a form of a one-dimensional convolution of initial conditions with
parameter-free evolution operator. Extension of the proposed procedure
that would allow for this case is an important development to be done [29].
Another interesting line of development would be to construct a procedure
for a more general evolution scheme which uses the actual kT of emitted par-
ticles (CCFM-like). Such a scheme would in particular allow for performing
fits of quantities other than F2 with the inclusion of the detector effects.
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