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Dirac-like linearisation of x2+p2 with noncommuting position and mo-
mentum variables leads to the representation of the standard U(1)⊗ SU(3)
symmetry of the three-dimensional harmonic oscillator in the relevant Clif-
ford algebra and the emergence of a formula which we previously pro-
posed to identify with the Gell-Mann–Nishijima–Glashow relation between
charge, third component of weak isospin and weak hypercharge. This ma-
trix representation exhibits features not present in the standard treatment
of harmonic oscillator. We show that these features, strictly correspond-
ing to the structure of a single quark–lepton generation in the Standard
Model, may be understood from the point of view of specific O(6) phase-
space transformations, which go beyond U(1)⊗ SU(3), and modify stan-
dard canonical commutation relations. It is demonstrated that the whole
structure of a single quark–lepton generation corresponds to assuming that
the imaginary unit appearing in the canonical commutation relations may
acquire an additional “+” or “−” sign separately for each of the three
directions.

PACS numbers: 11.30.–j, 03.65.–w, 02.40.–k

1. Introduction

A general idea is often advocated that there should exist a connec-
tion between the discrete quantum attributes of elementary particles and
the properties of the continuous arena used for the description of classi-
cal macroscopic processes [1]. Recently, this idea was discussed in Ref. [2]
from a somewhat different perspective. In particular, it was proposed there
that, as a starting point in such a discussion, it should be acceptable to
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adopt a nonrelativistic framework. Later it was pointed out in [3] that in
fact all those discrete quantum numbers of elementary particles for which
a connection with spacetime is known can be inferred via a nonrelativistic
reasoning. As stressed in [3], this claim refers also to the existence of the
particle–antiparticle degree of freedom, as observed in [4].

The essence of the conceptual argument of [2] was that instead of identify-
ing the arena of nonrelativistic physics with the observable three-dimensional
position space (with physical processes occurring in Newtonian time), one
should adopt the description given by the nonrelativistic Hamiltonian for-
malism, in which position and momentum coordinates are treated as inde-
pendent variables. In this language it is the concept of phase space which
provides the relevant arena to be used for the description of classical macro-
scopic processes. With such a shift in the meaning of the concept of arena,
the issue of a possible symmetry between the position and momentum coordi-
nates could be discussed in a more adequate language. In fact, an argument
in favour of introducing more symmetry between momentum and position
was put forward by Max Born in his reciprocity theory of elementary par-
ticles [5] already in 1949. His approach stemmed from the observation that
various laws of physics exhibit symmetry under reciprocity transformations:
x → p, p → −x. Consideration of these transformations requires the in-
troduction of one additional physical constant which permits the expression
of momenta and positions in the same dimensional units. When the Planck
constant is added, a natural mass scale is then set.

Accordingly, Ref. [2] was mainly concerned with the problem of mass.
First, it was argued that the assignment of a standard concept of mass to
quarks leads to conceptual problems related to the issue of quark confine-
ment. Then, it was pointed out that the phase-space approach admits such
a generalisation of the concept of mass that the original conceptual prob-
lems might hopefully dissappear. The generalisation in question consisted
in noting that:

(1) the standard concept of mass may be said to be associated with the
concept of momentum p only (i.e. the energy of a standard free particle
is given in terms of its mass and momentum, whether in a relativistic
or a nonrelativistic approach), with x conspicuously absent, and

(2) the phase-space formulation admits not just one but four different ways
of dividing the six-dimensional phase-space vector x⊕p into a pair of
3-dimensional objects. Thus, the original division of x ⊕ p into two
canonically conjugated sets of positions and momenta

{(x1, x2, x3), (p1, p2, p3)} (1)

may be generalised by admitting three additional alternatives, namely:
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{(x1, p2, p3), (p1, x2, x3)} ,

{(p1, x2, p3), (x1, p2, x3)} ,

{(p1, p2, x3), (x1, x2, p3)} . (2)

As argued in [2], with (x1, p2, p3), (p1, x2, p3) and (p1, p2, x3) playing the
role of generalised position coordinates, it seems then natural to assign the
concept of mass not only to (p1, p2, p3) but also to the three sets (p1, x2, x3),
(x1, p2, x3), and (x1, x2, p3), and conjecture that the three new alternatives
correspond to quarks. The apparent lack of O(3) invariance was considered
not a drawback, but a virtue of the approach: an argument against the
existence of standard quark propagators.

In the next step Ref. [2] combined x2 and p2, both being invariants of
the O(3) group (rotations and reflections in three dimensions), into a single
form x2 + p2, so that full x↔ p symmetry was introduced. Then, Ref. [2]
considered all transformations that keep invariant both x2 + p2 and the
position-momentum Poisson brackets (or canonical commutation relations).
The resulting symmetry group, conjectured to be fundamental, is obviously
U(1)⊗ SU(3), as is well known from the case of the three-dimensional har-
monic oscillator.

The philosophical and physical ideas of [2] provided some guidance on
how to construct an appropriate mathematical structure enabling their de-
scription and endowed with physical interpretation. Accordingly, Ref. [2]
contained some “toy” attempts in that general direction. While from the
present paper it is clear that these attempts were technically deficient, in no
way have these deficiencies invalidated the general conceptual idea of [2].

Paper [2] was followed by a more technically oriented paper of [3], in
which x2 + p2 was linearised á la Dirac. The U(1)⊗ SU(3) algebra in
question was then represented in the relevant Clifford algebra. Within
the latter algebra, the eigenvalues of the U(1) generator were shown to be
(+1/3,+1/3,+1/3,−1), exactly as needed for a description of a weak hyper-
charge Y for three coloured quarks and one lepton (with U(1) eigenvalues for
their antiparticles being opposite in sign). The total U(1) generator received
contributions from the phase space and the Clifford algebra, yielding a rela-
tion which we proposed to identify with the Gell-Mann–Nishijima–Glashow
formula [6] for lepton and quark charges:

Q = I3 + Y/2 , (3)

where I3 is the third component of weak isospin, and Y is weak hypercharge.
Thus, a connection going beyond the U(1)⊗ SU(3)⊗ SU(2)L group structure
of the Standard Model was achieved.
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As in Ref. [3] in this paper we shall not be concerned with the other
main ingredient of the Standard Model, i.e. with the gauge principle, al-
though ways of introducing it in the phase-space language have been dis-
cussed in the literature (see e.g. [7]). Rather, we shall continue studying the
very idea of connecting properties of phase space with quantum numbers
of elementary particles. In particular, we shall derive a precise relationship
between the conceptual arguments of [2], which lead to Eqs. (1), (2), and the
mathematical framework of [3], in which the Dirac linearisation prescription
leads to the Gell-Mann–Nishijima–Glashow formula of Eq. (3). The SU(4)
transformations between quarks and leptons (with leptons being the “fourth
colour” [8]) are then related to phase space SO(6) transformations. Like-
wise, the transformations between the I3 = ±1/2 eigenstates of the third
component of isospin are also interpreted as corresponding to specific phase-
space transformations (i.e. to reflection applied to only one of the two sets
of canonically conjugated variables).

2. Linearisation

Dirac-like linearisation of the x2 + p2 form was achieved in [2] with the
help of enlarged Dirac matrices Ak, Bk, and B:

Ak = σk ⊗ σ0 ⊗ σ1 ,

Bk = σ0 ⊗ σk ⊗ σ2 ,

B = σ0 ⊗ σ0 ⊗ σ3 , (4)

satisfying the anticommutativity conditions:

AkAl + AlAk = 2δkl ,

AkBl + BlAk = 0 ,

BkBl + BlBk = 2δkl ,

AkB + BAk = 0 ,

BkB + BBk = 0 ,

BB = 1 , (5)

with matrices Ak,B (or Bk,B) behaving like Dirac matrices αk, β. Matrix
B = iA1A2A3B1B2B3 constitutes the seventh anticommuting matrix of the
relevant Clifford algebra.

With noncommuting x and p we have:

(A · p+B · x)(A · p+B · x) = (p2+x2)σ0⊗σ0⊗σ0+Rσ≡Rz + Rσ, (6)
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where the superscripts z and σ are used to label the phase-space and the
matrix-space terms, and (unless otherwise stated, we use summation con-
vention for repeated indices)

Rσ =

3
∑

1

Rσ
k = − i

2
[Ak, Bk] = σk ⊗ σk ⊗ σ3 ,

Rσ
k = σk ⊗ σk ⊗ σ3 (no sum over k) . (7)

Furthermore, we define Y, Yk, y, and yk as follows

Y = RσB = BRσ =
3

∑

k=1

Yk =
3

∑

k=1

yk ⊗ σ0 = y ⊗ σ0 , (8)

with

Yk = yk ⊗ σ0 = σk ⊗ σk ⊗ σ0 (no sum over k) ,

y = σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3 . (9)

Alternatively, instead of Ak and Bk, one may consider matrix analogs of

operators ak ≡ (xk + ipk)/
√

2 and a†k ≡ (xk − ipk)/
√

2, namely:

Ck =
1√
2
(Bk + iAk) ,

C†
k =

1√
2
(Bk − iAk) . (10)

In terms of Ck and C†
k, the relevant anticommutation relations of equa-

tions (5) read:

{Ck, Cl} = {C†
k, C

†
l } = 0 ,

{Ck, C
†
l } = {C†

k, Cl} = 2δkl ,

{Ck, B} = {C†
k, B} = 0 . (11)

3. Charge, weak hypercharge and weak isospin

In Ref. [3] it was proposed to identify the operator of Eq. (6), multiplied
by B, with six times the operator of charge for fundamental particles (for
the origin of the factor of six, see [3]):

Q =
1

6
(Rz + Rσ)B

Rz=+3≡ I3 +
Y

2
, (12)
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where the lowest eigenvalue of Rz = +3 was adopted, as one would expect
appropriate for fundamental objects.

The operator of the third component of weak isospin I3 was identified as
related to B through

I3 =
1

2
B , (13)

and the weak hypercharge Y as related to Y through:

Y =
1

3
Y . (14)

It was further observed in [3] that y satisfies the following equation:

y2 + 2 y − 3σ0 ⊗ σ0 = 0 . (15)

Consequently, the eigenvalues of y are +1 and −3 (for Y , respectively: +1/3
and −1 ). Furthermore, the eigenvalue of +1 is triple degenerate. Note that
the value of y = +1 (Y = +1/3) corresponds to an eigenvalue of Rσ which
(in absolute magnitude) is three times smaller than the minimal value of Rz.
The appearance of these small eigenvalues, absent in the spectrum of the
three-dimensional harmonic oscillator requires explanation and understand-
ing in the phase-space language. This is what the present paper is about.

It is of great interest to see how the eigenvalues of Y are built out of the
eigenvalues of yk. Since all commutators [yk, yl], and [y, yk] vanish (for any
k, l), it follows that one can diagonalise all yk (Yk) and y (Y) simultaneously.
Performing such a diagonalisation we obtain

y1 = σ1 ⊗ σ1 =









+1
+1

+1
+1









→









−1
+1

−1
+1









,

y2 = σ2 ⊗ σ2 =









−1
+1

+1
−1









→









+1
+1

−1
−1









,

y3 = σ3 ⊗ σ3 =









+1
−1

−1
+1









→









+1
−1

−1
+1









, (16)

so that

Y →









+1

3

+1

3

−1
+1

3









⊗ σ0, ← colour #′s















1
3
0 (lepton)
2

, (17)
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with a clear division into the triplet and singlet subspaces. The obtained
eigenvalues of Y , appropriate for the description of three (“coloured”) quarks
and one lepton, lead via Eq. (12) to fractional quark and integer lepton
charges of the Standard Model. In Eq. (17) we labelled the three directions
of the y = +1 (Y = +1/3) subspace by assigning “colour” number k to
this direction for which yk takes on the value of −1. As discussed in [3],
the way in which the eigenvalues of Y are built out of the eigenvalues of yk

corresponds exactly to the rishon model of leptons and quarks proposed by
Harari [9].

For the sake of this discussion and Section 6 we recall from [3] that for
any element X the operation of charge conjugation is effected as follows:

X → X = CX∗C−1, (18)

with

C = −iσ2 ⊗ σ2 ⊗ σ2 = −C−1. (19)

This means in particular that

Ak = Ak , Bk = Bk , B = −B ,

pk = −pk , xk = xk , i = −i ,

Ck = C†
k , C†

k = Ck . (20)

The operation of charge conjugation is not equivalent to Hermitian conjuga-
tion, as can be seen either from pk = −pk, or from the application of relation
(18) to a product of matrices. It follows that

R
z

= Rz , R
σ

= −Rσ , (21)

I3 = −I3 , Y = Y . (22)

Consequently

Q = CQ∗C−1 = −1

6
(Rz −Rσ)B

Rz=+3
= −I3 +

Y

2
, (23)

and the observed charge of the antiparticle is

Qobs = −Q = I3 −
Y

2
, (24)

as seen from the comparison of exp(iφQ) with its charge conjugate version:

exp(−iφQ) = exp(iφQobs) . (25)
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4. SU(4) transformations

4.1. U(1)⊗ SU(3) generators

From the case of the three-dimensional harmonic oscillator it is well
known that the O(6) symmetry group of the x2 + p2 form is reduced to
U(1)⊗ SU(3) when the condition of invariance of the canonical position and
momentum commutation relations is imposed. In standard treatments of the
three-dimensional harmonic oscillator one introduces nine shift operators:

Hz
kl = 1

2

{

ak, a
†
l

}

, (26)

(see for example [3]). The nine generators Rz and F z
b (b = 1, 2, . . . 8) of the

U(1)⊗ SU(3) symmetry group are then expressed as linear combinations of
Hz

kl’s. Explicit formulas may be found in [3].
In Ref. [3] we defined the following nine shift operators acting in matrix

space, the counterparts of Hz
kl’s:

Hσ
kl = −1

4

[

Ck, C
†
l

]

= (Hσ
lk)

† , (27)

which act on Cn and C†
n as follows:

[Hσ
kl, Cn] = −δlnCk ,

[Hσ
kl, C

†
n] = +δknC†

l . (28)

Matrix counterparts of the relevant generators, denoted as Rσ and F σ
b

(b = 1, 2, . . . 8), are built from Hσ
kl’s in a way completely analogous to that

for Rz and F z
b . In matrix space the U(1) generator is just Rσ of Eq. (7) (i.e.

the trace-only part of Hσ
kl: Rσ = 2Hσ

kk = −1

2
[Ck, C

†
k]). Explicit formulas for

the SU(3) generators in matrix space are given in Ref. [3].

4.2. Genuine SU(4) shift operators

In the following we shall study in detail the origin of the appearance of
the fractional values of Y , which go beyond what is expected from the case
of the three-dimensional harmonic oscillator and correspond to the triplet
representation of SU(3). With this in mind, let us introduce six additional
operators, in addition to Hσ

kl:

ǫmklH
σ
m0 = −1

4
[Ck, Cl] ,

ǫmklH
σ
0m = +1

4
[C†

k, C
†
l ] , (29)
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satisfying
Hσ

0m = (Hσ
m0)

† . (30)

The nine Hσ
kl’s and the six Hσ

m0, Hσ
0m operators together correspond to

fifteen generators of SU(4).

Under the action of Hσ
m0 and Hσ

0m matrices Cn and C†
n transform as

follows:

ǫmkl[H
σ
m0, Cn] = 0 ,

ǫmkl[H
σ
m0, C

†
n] = +δknCl − δlnCk ,

ǫmkl[H
σ
0m, C†

n] = 0 ,

ǫmkl[H
σ
0m, Cn] = −δknC†

l + δlnC†
k . (31)

Shift operators may be decomposed into terms acting between subspaces
with different eigenvalues of Y and I3 as:

Hσ
m0 = Y−1I+

1

2

Hσ
m0I+

1

2

Y
+

1

3

+ Y
+

1

3

I− 1

2

Hσ
m0I− 1

2

Y−1 ,

Hσ
0m = Y

+
1

3

I
+

1

2

Hσ
0mI

+
1

2

Y−1 + Y−1I− 1

2

Hσ
0mI− 1

2

Y
+

1

3

, (32)

where we defined projection operators onto subspaces of definite hyper-
charge:

Y−1 =
1− Y

4
, Y

+
1

3

=
3 + Y

4
, (33)

and isospin:

I± 1

2

=
1±B

2
. (34)

Thus, Hσ
m0 and Hσ

0m are off-diagonal in Y : they connect triplet and
singlet SU(3) subspaces with each other, as indicated by subscripts “m0”
and “0m” of our notation.

4.3. Genuine SU(4) generators

In analogy to F σ
b ’s being built out of Hσ

kl, we now form out of Hσ
m0 and

Hσ
0m the six “genuine” Hermitian generators of SU(4) (the remaining opera-

tors Rσ and F σ
b will obviously be referred to as the U(1)⊗ SU(3) generators):

F σ
+1 = Hσ

10 + Hσ
01 = − i

4
([A2, B3]− [A3, B2]) ,

F σ
+2 = Hσ

20 + Hσ
02 = − i

4
([A3, B1]− [A1, B3]) ,

F σ
+3 = Hσ

30 + Hσ
03 = − i

4
([A1, B2]− [A2, B1]) , (35)
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and F σ
−1 = i(Hσ

10 −Hσ
01) = − i

4
([B2, B3]− [A2, A3]) ,

F σ
−2 = i(Hσ

20 −Hσ
02) = − i

4
([B3, B1]− [A3, A1]) ,

F σ
−3 = i(Hσ

30 −Hσ
03) = − i

4
([B1, B2]− [A1, A2]) . (36)

Explicit expressions for F σ
+n and F σ

−n are:

F σ
+n = 1

2
ǫnkl σk ⊗ σl ⊗ σ3 , (37)

and F σ
−n = 1

2
(σ0 ⊗ σn − σn ⊗ σ0)⊗ σ0 . (38)

The F σ
−n describe simultaneous rotations in mutually opposite senses in x

and p spaces. They constitute counterparts to “ordinary” simultaneous ro-
tations in likewise senses generated by Sn = 1

2
(σ0 ⊗ σn + σn ⊗ σ0) ⊗ σ0 for

which the two terms are added rather than subtracted.
By explicit calculation we find that

(F σ
+n)2 = (F σ

−n)2 = 1

2
(σ0 ⊗ σ0 − σn ⊗ σn)⊗ σ0 , (39)

and

(F σ
+n)3 = F σ

+n ,

(F σ
−n)3 = F σ

−n . (40)

The eight generators of SU(3) and the six genuine SU(4) generators to-
gether make fourteen generators. The fifteenth generator of SU(4) is propor-
tional to the U(1) generator Rσ, and in the same normalisation (we adopted
here the convention of a positive relative sign) it is:

F σ
15 ≡

1√
6

Rσ =
1√
6

y ⊗ σ3 =
√

6Y I3 , (41)

Using Eqs. (16), the SU(4) generator F σ
15 assumes the form

F σ
15 →

√

3

2









+1/3
+1/3

−1
+1/3









⊗ σ3 , (42)

i.e. it distinguishes between the SU(3) singlet and SU(3) triplet spaces.
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By an explicit calculation we find that under the action of F σ
±n matrices

Ck and C†
k transform as follows:

[F σ
+n, Ck] = − ǫnklC

†
l ,

[F σ
+n, C†

k] = + ǫnklCl, (43)

[F σ
−k, Cl] = +i ǫklmC†

m,

[F σ
−k, C

†
l ] = +i ǫklmCm, (44)

which should be compared with their transformation properties as triplets
(antitriplets) under SU(3), as given in Eqs. (36), (37) of [3].

For Rσ
k we have

[F σ
±k, R

σ
k ] = 0 (no sum) ,

[F σ
+k, R

σ
m ] = −2i F σ

−k (m 6= k) ,

[F σ
−k, R

σ
m ] = +2i F σ

+k (m 6= k) ,

[(F σ
±k)

2, Rσ
m ] = 0 (any k,m) . (45)

4.4. Finite genuine SU(4) transformations

Since Hσ
m0 and Hσ

0m connect the SU(3) triplet and singlet spaces, in
order to analyse transformations between quarks and leptons we have to
look at appropriate transformations generated by genuine SU(4) generators
F σ
±n. Consider e.g. finite rotations generated by F σ

±2, as applied to arbitrary
element X, i.e.:

X̃ = e+iφF σ
−2X e−iφF σ

−2 , (46)

or X̃ = e+iφF σ
+2X e−iφF σ

+2 . (47)

4.4.1. Transformations of Ak and Bk

In order to see how Ak and Bk transform under finite rotations generated
by F σ

−2 let us write:

F σ
−2 =

1

2

(

FB
2 − FA

2

)

, (48)

with

FA
2 ≡ S2 − F σ

−2 = σ2 ⊗ σ0 ⊗ σ0 ,

FB
2 ≡ S2 + F σ

−2 = σ0 ⊗ σ2 ⊗ σ0 , (49)
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which act separately on Ak and Bk:
[

FA
2 , Bk

]

=
[

FB
2 , Ak

]

=
[

FA
2 , FB

2

]

= 0 . (50)

Therefore,

Ãk = e−i
φ
2
F A

2 Ak e+i
φ
2
F A

2 ,

B̃k = e+i
φ
2
F B

2 Bk e−i
φ
2
F B

2 , (51)

i.e. A and B rotate in opposite senses:

Ã1 = A1 cos φ−A3 sinφ ,

Ã2 = A2 ,

Ã3 = A3 cos φ + A1 sinφ ,

B̃1 = B1 cos φ + B3 sin φ ,

B̃2 = B2 ,

B̃3 = B3 cos φ−B1 sin φ . (52)

Similarly, for rotations (47) generated by F σ
+2 we obtain:

Ã1 = A1 cos φ + B3 sin φ ,

Ã2 = A2 ,

Ã3 = A3 cos φ−B1 sin φ ,

B̃1 = B1 cos φ + A3 sin φ ,

B̃2 = B2 ,

B̃3 = B3 cos φ−A1 sin φ . (53)

4.4.2. Transformations of Rσ

m

Let us now see how Rσ
m transform under finite genuine SU(4) rotations

generated by F σ
±2. For transformations (46) generated by F σ

−2, we find from
Eq. (40):

e+iφF σ
−2 = 1 + (cos φ− 1)(F σ

−2)
2 + i sin φF σ

−2 . (54)

Therefore

e+iφF σ
−2Rσ

m = Rσ
m e+iφF σ

−2 + (cos φ− 1)[(F σ
−2)

2, Rσ
m]

+ i sin φ [F σ
−2, R

σ
m] . (55)

With the commutators on the r.h.s. above vanishing for m = 2 (see Eq. (45)),
we find that

R̃σ
2 = Rσ

2 . (56)
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On the other hand, for m 6= 2 we obtain

e+iφF σ
−2Rσ

me−iφF σ
−2 =Rσ

m−2 sinφF σ
+2(1+(cos φ−1)(F σ

−2)
2−i sin φF σ

−2) . (57)

Since

F σ
+2F

σ
−2 =

i

2
(Rσ

1 + Rσ
3 ) ,

F σ
+2(F

σ
−2)

2 = F σ
+2(F

σ
+2)

2 = F σ
+2 , (58)

we finally obtain for m 6= 2:

R̃σ
m = Rσ

m − sin 2φF σ
+2 − sin2 φ (Rσ

1 + Rσ
3 ) . (59)

For transformations (47) generated by F σ
+2 we find in a similar way that

R̃σ
2 = Rσ

2 , (60)

and, for m 6= 2:

R̃σ
m = Rσ

m + sin 2φF σ
−2 − sin2 φ (Rσ

1 + Rσ
3 ) . (61)

4.4.3. Quark–lepton transformations: φ = ±π/2

As we shall shortly see, transformations (46,47) are of particular interest
for φ = ±π/2. For these values of φ one obtains either from Eqs. (56), (59),
(60), (61), or directly from Eq. (7) and Eqs. (52), (53) that for both F σ

−2−
and F σ

+2−generated transformations one has the same result:

R̃σ
1 = ỹ1 ⊗ σ3 = −y3 ⊗ σ3 = −Rσ

3 ,

R̃σ
2 = ỹ2 ⊗ σ3 = +y2 ⊗ σ3 = +Rσ

2 ,

R̃σ
3 = ỹ3 ⊗ σ3 = −y1 ⊗ σ3 = −Rσ

1 . (62)

Applying these transformations to Eqs. (16) we find (after the same diago-
nalisation procedure) that

ỹ1 →









−1
+1

+1
−1









,

ỹ2 →









+1
+1

−1
−1









,

ỹ3 →









+1
−1

+1
−1









, (63)
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and

Ỹ →









+1

3

+1

3

+1

3

−1









⊗σ0 , ← colour #′s















1
3
2
0 (lepton)

. (64)

Comparing this with Eq. (17) we see that

Y =
1

3
(y1 + y2 + y3)⊗ σ0 → Ỹ =

1

3
(−y1 + y2 − y3)⊗ σ0 , (65)

i.e. (1) the signs in front of y1 and y3 are changed,
(2) the lepton subspace (Y =−1), and that of quark #2 are interchanged,
and
(3) the subspaces #1 and #3 are unchanged.

Thus, finite SU(4) transformations generated by F σ
±n (and defined in

analogy to Eqs. (46), (47)) interchange quark #n with lepton for φ = ±π/2.
On the other hand, the U(1)⊗ SU(3) transformations obviously cannot

change the sign in front of yk. Indeed, take e.g. k = 1. Then, as may be
checked by looking at explicit formulas for F σ

a gathered in [3], transforma-
tions generated by F σ

a with a=3, 7, 8 (and also Rσ) leave y1 invariant as for
these values of a one has [F σ

a , y1]=0. In order to see what happens for other
values of a, consider a=2, i.e. F σ

2 =S3 (see [3]). Then, one calculates that

eiφS3 y1 e−iφS3 =y1 cos2 φ + y2 sin2 φ−sin φ cos φ (σ1⊗ σ2+ σ2⊗ σ1), (66)

and for no value of φ one can obtain −y1 or −y2 on the r.h.s.. The action
of the remaining SU(3) generators may be analysed analogously.

5. SO(6) transformations

5.1. General case

The F σ
−2-generated transformations of equations (52) will leave the lin-

earised form
Akpk + Bkxk (67)

invariant, provided xk and pk transform accordingly (with p and x rotating
in opposite senses):

p̃1 = p1 cos φ− p3 sin φ ,

p̃2 = p2 ,

p̃3 = p3 cos φ + p1 sin φ ,
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x̃1 = x1 cos φ + x3 sinφ ,

x̃2 = x2 ,

x̃3 = x3 cos φ− x1 sinφ . (68)

We now calculate the form of position and momentum commutation relations
in new variables. For the position–position and momentum–momentum re-
lations we find:

[x̃k, x̃l] = [p̃k, p̃l] = 0 (69)

for any k, l. Thus, the new positions (new momenta) commute among them-
selves.

The diagonal position–momentum commutation relations are:

[x̃1, p̃1] = [x̃3, p̃3] = i cos 2φ ,

[x̃2, p̃2] = i , (70)

while the nondiagonal ones are:

[x̃1, p̃2] = [x̃2, p̃1] = [x̃2, p̃3] = [x̃3, p̃2] = 0 ,

[x̃1, p̃3] = −[x̃3, p̃1] = i sin 2φ , (71)

or, in matrix form:
[x̃k, p̃l] = i∆kl , (72)

with

∆ =





cos 2φ 0 sin 2φ
0 1 0

− sin 2φ 0 cos 2φ



 . (73)

For the F σ
+2−generated transformations the analogs of Eqs. (68) are:

p̃1 = p1 cos φ + x3 sinφ ,

p̃2 = p2 ,

p̃3 = p3 cos φ− x1 sinφ ,

x̃1 = x1 cos φ + p3 sinφ ,

x̃2 = x2 ,

x̃3 = x3 cos φ− p1 sinφ . (74)

The new position–position and momentum–momentum commutation rela-
tions are:

[x̃1, x̃2] = [x̃2, x̃3] = [p̃1, p̃2] = [p̃2, p̃3] = 0 , (75)

[x̃3, x̃1] = [p̃1, p̃3] = i sin 2φ , (76)
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while for the position-momentum commutation relations one obtains
Eq. (72) with

∆ =





cos 2φ 0 0
0 1 0
0 0 cos 2φ



 . (77)

5.2. The diagonality condition

If, instead of requiring that ∆ = 1 (which is the case of the three-
dimensional harmonic oscillator) one imposes a weaker (i.e. more general)
condition that the new positions (new momenta) commute among them-
selves, and that the position-momentum commutation relations stay di-
agonal, for both F σ

−2- and F σ
+2-generated transformations one needs that

sin 2φ = 0, i.e.
2φ = 0 , ±π , . . . , (78)

or

φ = ±π

2
, ±3π

2
. (79)

The cases with φ = 0 or with φ = ±π are trivial (the latter is equivalent
to an S2-generated “ordinary” rotation by ±π, see Eqs. (68), or Eqs. (74)).
Since ±(3π)/2 = ±π/2 ± π, the case φ = ±(3π)/2 is easily brought to the
case φ = ±π/2. The latter is precisely the case of the interchange of lepton
and quark # 2, as discussed in the previous section.

For φ = +π/2 (the case φ = −π/2 is related to φ = +π/2 by an
S2-generated ordinary rotation by π) the SO(6) transformation generated
by F σ

−2 reads:

p̃1 = −p3 , p̃2 = p2 , p̃3 = +p1 ,

x̃1 = +x3 , x̃2 = x2 , x̃3 = −x1 , (80)

while that generated by F σ
+2 is:

p̃1 = +x3 , p̃2 = p2 , p̃3 = −x1 ,

x̃1 = +p3 , x̃2 = x2 , x̃3 = −p1 . (81)

In both cases

∆ =





−1 0 0
0 +1 0
0 0 −1



 . (82)

In order to bring the above sets of expressions (80,81) to somewhat better-
ordered forms we shall use specific U(1)⊗ SU(3) transformations. First, we
perform an S2-generated ordinary rotation by π/2, which commutes with
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F σ
±2-generated transformations and does not affect ∆. For F σ

−2 this leads to
(keeping the same notation for transformed coordinates):

p̃1 = +p1 , p̃2 = p2 , p̃3 = +p3 ,

x̃1 = −x1 , x̃2 = x2 , x̃3 = −x3 , (83)

while for F σ
+2 one gets:

p̃1 = −x1 , p̃2 = p2 , p̃3 = −x3 ,

x̃1 = −p1 , x̃2 = x2 , x̃3 = −p3 , (84)

still satisfying Eq. (72) with ∆ as in Eq. (82).
Performing appropriate rotations in p1–x1 and p3–x3 planes (generated

by Rz
1 and Rz

3, i.e. by certain linear combinations of U(1)⊗ SU(3) generators
Rz, F z

3 , and F z
8 , see [3]), both (83) and (84) may be brought to the same

form with “+” signs everywhere:

p̃1 = x1 , p̃2 = p2 , p̃3 = x3 ,

x̃1 = p1 , x̃2 = x2 , x̃3 = p3 , (85)

which still satisfy Eq. (72) with ∆ as before.
In paper [2] it was pointed out that there exist four (i.e. 3+1) ways

in which six coordinates of phase space may be divided into two sets of
three “position” and three “momentum” coordinates. Furthermore, Ref. [2]
speculated that these four possibilities may be related to the issue of mass
and the existence of three coloured quarks and one lepton (as present in
a single generation of the Standard Model when isospin is neglected). The
above considerations show the precise way in which the original argument
of [2] is connected with the quark–lepton hypercharge structure derived in
Ref. [3] from the analysis of the Dirac-like linearisation of phase-space in-
variant x2+p2. In brief, for a given value of I3, the transformations between
a quark and a lepton correspond to those genuine SO(6) rotations in phase
space which keep momentum–position commutation relations diagonal (but
not identical).

More specifically, the four possible ways of dividing phase-space coor-
dinates into two sets — one of canonical momenta p and one of canonical
positions x, correspond to four possibilities for matrix ∆ in the commutation
relations of standard momenta p and positions x:

[xk, pl] = i∆kl . (86)

These four possibilities for ∆ are as follows:




+1 0 0
0 +1 0
0 0 +1



 ,





+1 0 0
0 −1 0
0 0 −1



 ,





−1 0 0
0 +1 0
0 0 −1



 ,





−1 0 0
0 −1 0
0 0 +1



 . (87)
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Following an example given in Eq. (85), an appropriate redefinition of xk’s
and pk’s brings Eqs. (86), (87) to the form when the canonical momenta
and positions — as defined in Eqs. (1), (2) by the division of the set of
(x1, x2, x3, p1, p2, p3) into two groups — satisfy standard commutation rela-
tions with +iδkl everywhere on the r.h.s of position–momentum commuta-
tion relations. This is the precise connection between the general ideas of [2]
and the more technical results of [3].

6. Isospin and reflections in phase space

In the previous section we discussed transformations between the subspa-
ces corresponding to different ways of obtaining the eigenvalues for Y , i.e.

(−1− 1− 1)/3 = −1 ,

(−1 + 1 + 1)/3 = 1/3 ,

(+1− 1 + 1)/3 = 1/3 ,

(+1 + 1− 1)/3 = 1/3 . (88)

In a similar spirit, in this subsection we shall discuss transformations between
the subspaces corresponding to different eigenvalues of I3 = ±1/2. These
transformations are effected e.g. by

I± ≡ σ0 ⊗ σ0 ⊗ σ1 , (89)

which interchanges I3 = ±1/2:

I3 → Ĩ3 = I± I3 I± = −I3 . (90)

The corresponding transformations of Ak and Bk are:

Ak → Ãk = Ak, Bk → B̃k = −Bk . (91)

If the linearised form Akpk + Bkxk is to be invariant, the following are the
corresponding transformations in phase space:

p̃ = p, x̃ = −x . (92)

Had we used σ0 ⊗ σ0 ⊗ σ2 in place of σ0 ⊗ σ0 ⊗ σ1 we would have ended up
with

p̃ = −p, x̃ = x . (93)

In both cases we get overall reflections in either momentum or position space.
In both cases we also have:

i→ ĩ = i , (94)
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since no complex conjugation is performed. Therefore, in both cases we
obtain that if

[xk, pl] = iδkl , (95)

corresponds to sector with I3 = +1/2, then

[xk, pl] = −iδkl (96)

corresponds to sector with I3 = −1/2 (compare Eqs. (86), (87). Conse-
quently, we see that the isospin degree of freedom corresponds to the freedom
of choosing either +i or −i on the r.h.s. of position–momentum commuta-
tion relations. It should be strongly stressed that this freedom of choice of
the sign in front of i on the r.h.s of commutation relations is not related to
complex conjugation as used in the operation of charge conjugation. Namely,
when one performs the operation of charge conjugation (c.f. Eq. (20)) one
takes complex conjugation i→ i∗ = −i on both sides of the original commu-
tation relations, i.e.

[xk, pl] = [i
d

dxl

, xk] = iδkl , (97)

goes into

[xk,−pl] = [−i
d

dxl

, xk] = −iδkl , (98)

with both the relative sign between p and x, and the sign in front of i on
the r.h.s. changed. In this way one goes from p− eA to −p− eA (for real
vector potential A), and, at the same time, from a given representation to
its complex conjugate. Thus, in charge conjugation operation, the canonical
commutation relations are in fact unchanged, as may be seen by multiplying
both sides of (98) by −1.

On the other hand, in the transformation between the I3 = ±1

2
sectors

the commutation relations are changed. In fact, it is the very definition of
what we mean by i that in some sense seems to be related to the possibility of
the existence of the isospin degree of freedom. Namely, the only definition
of i that we have is that i2 = −1. This, however, is satisfied both by i
and by −i, and, therefore, my “i” may be somebody’s “−i”. As long as
one neglects weak interactions (which change I3), the sector in which the
imaginary unit I used on the right hand side of commutations relations is
defined as +i is fully disjoint from the other sector in which I is taken as −i.
Then, in the other sector, one may freely replace −i by +i and obtain the
familiar formalism with I = +i everywhere. In the real world, however, the
replacement of i by −i is obviously not allowed as weak interactions cannot
be switched off.
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The analogous substitution of i in place of −i in the quark sector could
be admitted only if one “switches off” strong interactions, which, contrary
to the weak case, is obviously not an acceptable approximation to Nature.

When the isospin degree of freedom is taken into account, the ∆ matrix
present on the r.h.s. of Eq. (86), in addition to the possibilities given in
Eq. (87), may acquire the following forms as well:





−1 0 0
0 −1 0
0 0 −1



 ,





−1 0 0
0 +1 0
0 0 +1



 ,





+1 0 0
0 −1 0
0 0 +1



 ,





+1 0 0
0 +1 0
0 0 −1



 . (99)

The eight possibilities of Eqs. (87), (99) correspond to the possibility of
freely choosing I to be +i or −i “separately in each of the three directions”,
and to the existence, in a given Standard Model generation, of eight different
quarks and leptons.

7. Summary

The original paper [2] addressed the problem of mass, arguing for such
a treatment of positions and momenta, in which mass could be associated
not only with momentum (as in the standard relativistic or nonrelativis-
tic expressions for the energy of a free particle), but also with position.
The arguments formulated therein suggested that there should be three
counterparts to the standard case in which mass is associated with the di-
vision of the six canonical variables (p1, p2, p3, x1, x2, x3) into momentum
(p1, p2, p3) and position (x1, x2, x3). The three cases in question correspond
to three additional possible divisions of the set of phase-space variables into
pairs of canonically conjugated momenta and positions, i.e.: {(p1, x2, x3),
(x1, p2, p3)}, {(x1, p2, x3), (p1, x2, p3)}, and {(x1, x2, p3), (p1, p2, x3)}.

In Ref. [3] a linearization procedure á laDirac was applied tox2 +p2

with x and p satisfying standard commutation relations. The U(1)⊗ SU(3)
phase-space symmetry was thus represented in the relevant Clifford algebra.
The eigenvalues of the U(1) generator Y were shown to be (+1/3,+1/3,
+1/3,−1), as needed for the description of a weak hypercharge for three
coloured quarks and one lepton. Furthermore, a formula identified with the
Gell-Mann–Nishijima–Glashow formula Q = I3 + Y/2 was derived.

In the present paper we established a connection between the approaches
of [2] and [3]. Symmetries of the nonrelativistic quantum phase space were
correlated with SU(4) and weak isospin quark–lepton transformations. We
have shown how the commutation relations should be imposed — within
each of the four possible divisions of the set of six phase-space variables into
canonical momentum and position — in order that a proper correspondence
with the charge, weak hypercharge and isospin quantum number structure
of Ref. [3] is achieved.
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In summary there are two ways of looking at the results obtained. The
first one is that we keep standard meaning for momenta and positions, but
allow the i’s appearing on the r.h.s. of commutation relations to be ±i,
independently for each of the three directions. The other is that we keep
the standard +i on the r.h.s. of all commutation relations, but write them
in terms of canonical momenta and positions which are obtained from the
standard ones by appropriate redefinitions, realizing in this way the ideas
of [2].
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