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Small momentum transfer elastic pion–proton cross-section at high en-
ergies is calculated assuming the proton is composed of two constituents,
a quark and a diquark. We find that it is possible to fit very precisely
the data when (i) the pion acts as a single entity (no constituent quark
structure) and (ii) the diquark is rather large, comparable to the size of
the proton.
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1. Introduction

In this note we study the quark correlations inside the nucleon — form-
ing a diquark [1] — in the context of elastic pion–proton scattering at low
momentum transfer.

The interest in this process is a consequence of Ref. [2] where the elastic
proton–proton scattering, assuming the proton is composed of quark and
diquark, was discussed. We found that (i) it was possible to fit very pre-
cisely the ISR elastic pp data [3] even up to −t ≈ 3 GeV2 and (ii) the
diquark turned out to be rather large, comparable to the size of the pro-
ton. Moreover, we found that the quark–diquark model of the nucleon in
the wounded [4] constituent model [5] allows to explain very well the RHIC
data [6] on particle production in the central rapidity region.

Given above arguments, it is interesting to explore the model for another
process. The natural one is elastic pion–proton scattering. Following [2] we
consider the proton to be composed of two constituents — a quark and
a diquark. As far as the pion is concerned we consider two cases. The
first one treats the pion as an object composed of two constituent quarks,
the second one treats the pion as a single object i.e. an object without
constituent quark structure.
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For both cases we evaluate the inelastic pion–proton cross-section, σ(b),
at a given impact parameter b. Then, from the unitarity condition we obtain
the elastic amplitude1

tel(b) = 1 −
√

1 − σ(b) , (1)

and consequently the elastic amplitude in momentum transfer representation

T (∆) =

∫

tel(b)e
i ~∆·~bd2b . (2)

With this normalization one can evaluate the total cross-section

σtot = 2T (0) , (3)

and elastic differential cross-section (t ≃ −|∆|2)

dσ

dt
=

1

4π
|T (∆)|2 . (4)

Our strategy is to adjust the parameters of the model so that it fits
best the data for elastic pion–proton cross-section. In this way the model
can provide some information on the details of proton and pion structure at
small momentum transfer.

2. Pion as a quark–quark system

We follow closely the method presented in [2] where the elastic and
inelastic proton–proton collision was studied. Consequently, the inelastic
pion–proton cross-section at a fixed impact parameter b, σ(b), is given by

σ(b) =

∫

d2sqd
2sdd

2sq1d
2sq2Dp(sq, sd)Dπ(sq1, sq2)σ(sq, sd; sq1, sq2; b) , (5)

where Dp(sq, sd) and Dπ(sq1, sq2) denote the distribution of quark (sq) and
diquark (sd) inside the proton and the distribution of quarks (sq1,sq2) inside
the pion, respectively. σ(sq, sd; sq1, sq2; b) is the probability of inelastic in-
teraction at fixed impact parameter b and frozen transverse positions of all
constituents. The schematic view of this process is shown in Fig. 1.

Using the Glauber [7] and Czyz–Maximon [8] expansions we have2

1−σ(sq, sd; sq1, sq2; b) =[1 − σqq(b + sq1−sq)][1−σqq(b + sq2 − sq)]

×[1−σqd(b+sq1 − sd)][1−σqd(b+sq2 − sd)] , (6)

where σab(s) (ab denotes qq or qd) are inelastic differential cross-sections of
the constituents.

1 We ignore the real part of the amplitude.
2 Here and in the following we assume that all constituents act independently.
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π

Fig. 1. Pion–proton scattering in the quark–diquark model. Pion as a quark–quark

system.

Following [2] we parameterize σab(s) using simple Gaussian forms

σab(s) = Aabe
−s2/R2

ab . (7)

We constrain the radii Rab by the condition: R2
ab = R2

a + R2
b where Ra

denotes the quark or diquark’s radius3.
From (7) we obtain the total inelastic cross-sections σab = πAabR

2
ab.

Following [2] we assume that the ratios of cross-sections satisfy the condition
σqd/σqq = 2, what allows to evaluate Aqd in terms of Aqq.

For the distribution of the constituents inside the proton we take a Gaus-
sian with radius R

Dp(sq, sd) =
1 + λ2

πR2
e−(s2

q+s2
d
)/R2

δ2(sd + λsq) , (8)

where the parameter λ has the physical meaning of the ratio of the quark
and diquark masses λ = mq/md (the delta function guarantees that the
center-of-mass of the system moves along the straight line). One expects
1/2 ≤ λ ≤ 1.

For the distribution of quarks inside the pion we take a Gaussian with
radius d

Dπ(sq1, sq2) =
1

πd2
e−(s2

q1+s2
q2)/2d2

δ2(sq1 + sq2) . (9)

It allows to define the effective pion radius Rπ

R2
π = d2 + R2

q . (10)

Now the calculation of σ(b), given by (5), reduces to straightforward
Gaussian integrations. The relevant formula is given in the Appendix. In-
troducing this result into the general formulae given in Section 1, one can
evaluate the total and elastic differential pion–proton cross-sections.

3 We assume the quark radius to be the same in the proton and pion. We have checked,
however, that allowing the Rq’s to vary independently we are led to the same con-
clusions.
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Our strategy is to adjust the parameters of the model so that it fits
the data best. We have analyzed the data for elastic π+p scattering at two
incident momenta plab = 100 GeV and 200 GeV [9]. An example of our
calculation is shown in Fig. 2, where the differential cross-section dσ/dt at
plab = 200 GeV, evaluated from the model, is compared with data [9].
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Fig. 2. The model compared to data [9] on differential cross-section for elastic

π+p scattering at plab = 200 GeV (not all points plotted, for clarity). Pion as

a quark–quark system.

From Fig. 2 one sees that it is possible to fit very precisely the data up
to −t ≈ 1 GeV2. However, the model, with the pion as a two-quark system,
predicts the diffractive minimum which is not seen in the data. In the next
section we show that assuming the pion to be a single entity (no constituent
quark structure) we are able to remove this problem.

The relevant values of the parameters are given in Table I 4.

TABLE I

The parameters of the model at the incident momentum plab = 200 GeV. Pion as
a quark–quark system.

plab [GeV] Rq [fm] Rd [fm] R [fm] Rπ [fm] Aqq

200 0.26 0.82 0.28 0.44 1

It is intriguing to notice that the values of the most interesting param-
eters, Rq and Rd, are not far from those obtained in [2] were elastic pp
scattering was studied in similar approach. Again, we observe that the di-
quark is rather large.

4 The model is almost insensitive to the value of λ (provided that 1/2 ≤ λ ≤ 1).
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3. Pion as a single entity

In the present section we assume that the pion interacts as a single entity
i.e. the pion has no constituent quark structure. The schematic view of the
pion–proton scattering in this approach is shown in Fig. 3.

π

Fig. 3. Pion–proton scattering with the pion as a single entity.

The inelastic pion–proton cross-section σ(b) at a fixed impact parameter
b reads

σ(b) =

∫

d2sqd
2sdDp(sq, sd)σ(sq, sd; b) , (11)

with Dp(sq, sd) given by (8) and σ(sq, sd; b) expressed by

1 − σ(sq, sd; b) = [1 − σqπ(b − sq)][1 − σdπ(b − sd)] . (12)

In analogy to the previous approach the inelastic differential quark–pion,
σqπ(s), and diquark–pion, σdπ(s), cross-sections are parametrized using sim-
ple Gaussian

σaπ(s) = Aaπe−s2/R2
aπ . (13)

In this case we constrain the radii Raπ by the condition R2
aπ = R2

a + R2
π,

where Ra denotes the quark or diquark’s radius and Rπ denotes the pion’s
radius.

This gives

σ(b) =
Aqπx
x+r e−b2/(x+r) + Adπy

y+λ2r
e−b2/(y+λ2r)

−
AqπAdπxy

xy+yr+λ2xr
e
−b2 x+y+(1+λ)2r

xy+yr+λ2xr , (14)

where x = R2
q + R2

π, y = R2
d + R2

π and r = R2/(1 + λ2). Introducing this
result into the general formulae given in Section 1 one can evaluate the total
and elastic differential pion–proton cross-sections.

From (13) we deduce the total inelastic cross-sections: σaπ = πAaπR2
aπ.

As before we demand that the ratios of cross-sections satisfy the condition:
σdπ/σqπ = 2, what allows to evaluate Adπ in term of Aqπ.
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It turns out that the model in this form works very well indeed i.e. it
is possible to fit very precisely the data even up to −t ≈ 3 GeV2. We have
analyzed the data at two incident momenta of 100 and 200 GeV [9]. The
results of our calculations are shown in Fig. 4
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Fig. 4. Pion acts as a single entity. The model compared to data [9] (not all

points plotted, for clarity) on differential cross-section for elastic π+p scattering at

plab = 100 GeV (rescaled by a factor 10−2) and 200 GeV.

The relevant values of the parameters are given in Table II. Again, the
most interesting observation is the large size of the diquark, comparable to
the size of the proton.

TABLE II

The parameters of the model at two incident momenta plab = 100 GeV and
200 GeV. Pion acts as a single entity.

plab [GeV] Rq [fm] Rd [fm] R [fm] Rπ [fm] Aqπ

100 0.25 0.79 0.28 0.50 0.80
200 0.25 0.79 0.28 0.52 0.75

4. Discussion and conclusions

In conclusion, it was shown that the constituent quark–diquark structure
of the proton can account very well for the data on elastic π+p scattering.
The detailed confrontation with data allows to determine the parameters
characterizing the proton and pion structure. We confirm the large size of
the diquark, while the pion seems to interact as a single entity i.e. without
constituent quark structure.
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Several comments are in order.

(a) We compared the model only to elastic π+p scattering data, however,
there is no statistically significant difference between π+p and π−p
data [9] at any t value (at least up to −t ≈ 3 GeV2).

(b) The pion seems to interact as a single entity. It suggests that during
pion–nucleus collision the pion produces the same number of particles
no matter how many inelastic collisions it undergoes5.

We thank Andrzej Bialas for suggesting this investigation and illumi-
nating discussions. Discussions with Stephane Munier, Robert Peschanski,
Michal Praszalowicz and Samuel Wallon are also highly appreciated.

Appendix

The problem is to calculate the following integral

r1r2

π2

∫

d2sd2s′e−r1s2
e−r2s′2e−y1(b+λs−s′)2e−y2(b+λs+s′)2

×e−x1(b−s−s′)2e−x2(b−s+s′)2 =
r1r2

Ω
e−b2Γ/Ω , (15)

where

Γ = (1+λ)2 [4x1x2(y1+y2)+4y1y2(x1+x2)+r2(x1+x2)(y1+y2)]

+4r1(x1+y1)(x2+y2)+r1r2(x1+x2+y1+y2) , (16)

Ω = (1−λ)2(x1y2+x2y1)+(1+λ)2(x1y1+x2y2)+λ2[r2(y1+y2)+4y1y2]

+r1(x1+x2+y1+y2+r2)+r2(x1+x2)+4x1x2 . (17)

Other needed integrals can be obtained by putting some of the x1, x2,
y1 or y2 = 0.

5 We thank Robert Peschanski for this observation.
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