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The equation of motion of massive spherical shell expanding in the
field of its own gravitational potential has been solved within the special
relativity mechanics, assuming fixed total energy of such system. The initial
velocity of such “shell-universe” is always finite and equal to the velocity of
light. When the total energy is less than the rest mass energy of the shell,
the expansion terminates in time and the shell collapses, while otherwise
it expands indefinitely; at long times it resembles the Friedman model of
universe. For zero total energy the shell radius goes in time t as sin(Ωt),
where the “frequency” Ω is proportional to the rest mass of the shell. A
given “lifetime” of the expansion-terminated shell universe can be achieved
in two ways: “grand” or “small” expansion scenarios. Another version of
the model, relying explicitly on the energy–gravitational-mass equivalence,
leads to similar (but not identical) predictions. The predictions of the
model are compared with the predictions of the GRT “dust shell” model.
Possible impact of this special relativity model of expanding universe on
its general relativity counterpart is suggested.

PACS numbers: 98.80.Bp, 98.80.Jk, 98.80.Es

1. Introduction

The theory of expanding universe, as given in the textbooks [1, 2] on
the Einstein’s general relativity theory (GRT), generally suffers an evident
shortcoming originating yet from the famous Friedman paper [3, 4] — the
initial velocity of the expansion is infinite. It seems, this feature is the result
of the convention, that the GRT formulation should in proper limit converge
to the expansion pattern following from the classic Newtonian mechanics,
also showing such feature.

The dynamics of the spherical “dust sphere” has been first treated by
Israel [5], within the GRT. The initial expansion of such a sphere also tends
to occur with infinite velocity, although the reason for it is in this case less
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obvious and somewhat hidden in the derivation procedures. There have been
afterwards many developments in the field of the general-relativity spherical-
shell-models — they show several merits for astrophysics and cosmology. We
do not enter here the GR part of the story and propose the readers instead
a comprehensive revue by Kijowski, Magli and Malafarina [9].

We would like to note, that the problem of singularity of initial expan-
sion, appearing in the GR theories of expanding universe, does not seem to
have been clearly resolved till now. It may be an artifact due to approx-
imations involved in solving the Einstein equations of motion, or it is the
property inherent to the basic assumption of the universe being isotropic,
uniform and spherical. There is also the possibility that this initial singu-
larity cannot be avoided as long as the gravitation field and the matter are
in the theory two separate notions [4].

One should add here a comment on the inflation process as the beginning
of the Universe expansion, in times of the order of 10−33 s. Being exponen-
tial, the expansion velocity in this model soon exceeds the velocity of light c.
One should therefore ask how it compares to the initial velocity of expansion
in the present model, which is just c.

The answer is that they cannot be compared at all — the models belong
to different logical categories. In our SRT model one considers the motion of
a material sphere expanding in absolute time t, and there at the beginning
we have the expansion linear in time, R = ct.

The inflation phenomenon has now a rich literature, but it is present
already in the de Sitter GRT model of isotropic uniform static empty uni-
verse [10], derived at the beginning of the General Relativity era. According
to Gribbin [11], in the inflation process “it is the spacetime itself that is
expanding, carrying matter along for the ride”. Following Möller [1], in the
de Sitter model the particles initially at rest remain at rest during expansion,
although distances between them exponentially increase, R ≈ exp(t/t0), t0
being of the order of 10−33 s. Gribbin emphasizes, that the inflation theory
predicts just such small fluctuations in the otherwise uniform background
radiation and in the distribution of galaxies, as have been found in recent
astronomic observations of most early Universe using the COBE telescope.

In this paper we carry on the exact calculation of the expansion of ma-
terial shell within the special relativity theory, relying on the energy con-
servation law. Although this approach is simple-minded, its predictions are
reasonable in the whole time and size domain, except perhaps the very early
inflation period.
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2. The spherical shell model of special relativity
— the rest mass version (I)

Using the special-relativity theory (SRT) one can set up an interesting
and simple analogue of the general-relativity big-bang model of universe,
showing a finite initial velocity of expansion. We consider here such SRT
model: the expanding spherical material shell, similar to the above men-
tioned dust-sphere GRT model of Israel. Assuming the rest mass M0 and
the radius r of the sphere, its gravitational potential energy is −kM2

0 /r,
where k is the gravitational constant.

Fig. 1. Circle — the expanding shell of radius r. Rectangular — a magnified piece
of the shell, showing its finite thickness. The shade represents the mass distribution
within the shell, whereas the small circle immersed in the shade might be the visible
universe.

Let us consider radial movement of such spherical shell (see Fig. 1) of
the radius r(t) and radial velocity v(t) = dr(t)/dt, where t is time. Within
the SRT the total energy of such a system is

E =
M0c

2

√

1 − (v/c)2
− k

M2
0

r
, (1)

where c is the velocity of light. We can introduce dimensionless variables

ε =
E

M0c2
, β =

v

c
, x =

r

R
, R =

kM0

c2
. (2)

One can solve Eq. (1) for the dimensionless radial velocity, to obtain the
equation of motion of the shell

β =

(

1 −
x2

(εx + 1)2

)1/2

. (3)
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One sees immediately that the maximal shell radius corresponding to radial
velocity β = 0 is

xmax =
1

1 − ε
, (4)

i.e. the expansion terminates if ε < 1. Fig. 2 shows the behavior of the
velocity for several values of the energy ε.
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Fig. 2. Radial velocity of the shell, β = v/c, versus the dimensionless radius
x = r/R, where R = kM0/c2, according to Eq. (3), for ε = −1, 0, 0.5, 1, 1.5,
subsequently from left to right. All pictures below are given for the version I of the
model, corresponding to Eq. (1).

To pursue the expansion in time we integrate Eq. (3). Assuming x = 0
at t = 0, it can be written as

x
∫

0

εx + 1

(Ax2 + Bx + C)1/2
dx =

c

R

t
∫

0

dt , (5)

where

A = ε2 − 1 , B = 2ε , C = 1 .

Let us introduce the dimensionless time τ = ct/R. Three cases have to be
distinguished:

I. A < 0 , i.e. ε < 1

τ =
ε

A

[

(

Ax2 + 2εx + 1
)1/2 − 1

]

+(−A)−3/2[arcsin ε−arcsin(Ax+ε)] .

(6)
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II. A > 0 , i.e. ε > 1

τ =
ε

A

[

(

Ax2 + 2εx + 1
)1/2 − 1

]

+A−3/2
[

ln(
√

A + ε) − ln
(√

A
√

Ax2 + 2εx + 1 + Ax + ε
)]

−→
x→∞

x .

(7)

III. A = 0 , i.e. ε = 1

τ =
1

3

[

(2x + 1)1/2(x + 2) − 2
]

−→
x→∞

x3/2 . (8)

Fig. 3 shows the expansion of the shell for different values of the energy.
One can see that in this model one obtains 3 analogues of the universe
history of the big bang type: II — hyperbolic expansion, III — “parabolic”
expansion, I — terminated expansion and possible return.
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Fig. 3. Dimensionless shell radius x = r/R versus the dimensionless time τ = ct/R

plots, for the total energy ε ≡ E/(M0c
2) = 0, 0.5, 1, 1.5, subsequently, going up

from the lowest curve, see Eqs. (6), (7), (8). For each curve the initial velocity
v = c. The case ε = 0 corresponds to the sinusoidal history given by Eq. (9).
Note that the absolute value of the shell velocity v(t) within this model does not
exceed c.
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Fig. 4. Shell expansion, notation as in Fig. 3, at ε = 0.95, i.e. close to the critical
value of the energy parameter ε = 1. The curve is continuous and the pictorial
sharp step at maximum is round in proper scale.

3. Sinusoidal history of the Shell Universe

In the class I we have a very interesting case — the Shell Universe with
zero total energy, ε = 0, (say, the “cheap” universe). Eq. (6) gives x = sin(τ),
or:

r = R sin(Ωt) (9)

i.e. the pendulum-like single-swing behavior, with the “frequency”

Ω =
c3

kM0

. (10)

At Ωt = π such an universe suffers a total collapse, r = 0, i.e. its age cannot
exceed

T0 = π
kM0

c3
, (11)

where the subscript “zero” in T0 is related to the value ε = 0. One can call
this quantity the lifetime of such universe. The history of the energy-less
universe depends on its rest mass only.

Let us evaluate the Hubble constant for this special case

H ≡
v(t)

r(t)
= Ω cot(Ωt) . (12)

Interestingly, at small t it is the rest-mass independent quantity — just the
inverse of the elapsed time.
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Of course one can use Eqs. (6)–(8) to write it for general cases. In
particular, one easily finds from Eq. (6) for ε < 1 the general formula for
the lifetime of such shell-model universe

Tε = T0(1 − ε2)−3/2(1 + 2 arcsin ε/π) . (13)

It is interesting to note that the shortest lifetime occurs at the negative
energy εs

∼= −0.24411, see Fig. 5. There follows from it an interesting
observation: for a given rest mass M0 of the shell one can arrive at the same
lifetime in the low-energy “small expansion scenario” −1 < ε < εs, and in
the “grand expansion scenario” εs < ε < 1, see Eq. (4) and Fig. 6.
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Fig. 5. The lifetime of the shell-model universe, Tε/T0, versus its total energy
ε = E/(M0c

2), in the energy range ε < 1, see Eq. (13).
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Fig. 6. Two different expansions characterized by the identical lifetime: the “small
expansion scenario”, ε = −0.76, lower plot, and the “grand expansion scenario”,
ε = 0.4, upper plot. Notation as in Fig. 3.



2680 A. Czachor

4. Shell model of special relativity — the total
mass-energy version (II)

Having in mind the Einsten’s equivalence of the energy and the grav-
itational mass, proven e.g. for photons by Pound and Rebka [6], one may
apply it to formulate another version (say, version II) of the shell model of
universe: to put (E/c2)2 instead of M2

0 in the gravitation term of Eq. (1).
The equation of motion (3) takes on the form

β =

[

1 −
x2

(εx + ε2)2

]1/2

. (14)

Looking for β = 0 one finds that the maximal radius for the closed shell-
universe (ε < 1) is now shorter than in the first version

xm =
ε2

1 − ε
. (15)

In particular, in this version II at ε = 0 such a system does not exist at all;
in a way it is consistent with elementary intuition. Note that both versions
coincide at ε = 1. The integration is formally such as before, see Eq. (7),
now with A = ε2 − 1, B = 2ε2, C = ε4 and nominator εx + ε2. It follows
that, for open universe, ε ≥ 1, the indices s in the time dependence of x ≈ ts

at t → ∞ are such as in the first version of the model: s = 2/3 for ε = 1,
s = 1 for ε > 1. The lifetime is such as given by Eq. (13), the RHS being
multiplied by ε2. Also in this model the expansion velocity at small times
is c.

All above results follow directly from the energy conservation law. With
some extra work one can arrive at them via the special-relativity Newton
force law, too.

5. A comparison of the SRT and GRT spherical shell models

Within the General Relativity Theory the problem of radial motion of
a thin material spherical shell (shell of dust) has been treated by Israel [5],
assuming the Schwarzschild metric form for the exterior vacuum region V +

(

ds2
)+

= f−1dr2 + r2
(

dθ2 + sin2 θdϕ2
)

− fdt2 ,

where f(r) = 1 − 2m/r and m is the gravitational mass of the shell, equiv-
alent of the total energy, (i.e. E in our notation). For the interior region
V − one obtains the metric by formally putting m = 0 in the above formula.
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With s being the proper time along the streamlines one deals here with the
sphere radius r = R(s) and Ṙ = dR/ds. After meticulous derivations the
GRT equation for the shell motion has the form [5]

R̈

[

(1 + Ṙ2)1/2 +

(

1 + Ṙ2 −
2m

R

)1/2
]

= −
m(1 + Ṙ2)1/2

R2
.

The first integral of this equation is

(1 + Ṙ2)1/2 = a +
m

2aR
,

where a is the constant of integration [5]. Its physical content is found to
be such that the rest-mass of the shell is m/a, thus a is equivalent to our
dimensionless energy ε. Let us just mention here that the final integrations
of this GRT equation, “the career of collapsing shell”, the hypothesis of
elastic reversible rebounding of the sphere from R = 0 and related logical
problems, are treated in another paper of Israel [7] and many subsequent
papers (see [9]).

We shall compare now the essentials of the sphere motion within the
SRT and the GRT. One should emphasize, however, that such a comparison
can be fair only to a certain degree, because the very notions of time, mass
and radius have in the GRT subtler and more diversified meaning than in
the SRT — see e.g. the comment in the book of Synge on spherical stars [8].
As our comparison is mainly qualitative, we have decided to give it below
in a simplistic way.

In the units given by Eqs. (2) we can solve the above equation for Ṙ ≡ β
to obtain the GRT analogue of Eqs. (3), (14)

β =

[

(

ε +
1

2x

)2

− 1

]1/2

. (16)

One can see that for x → ∞ and ε > 1 the expansion is qualitatively such
as in the SRT versions I and II, while for ε < 1 in all cases the expansion
terminates and in the GRT case the final radius is finite

xmax =
1

2

1

1 − ε
(17)

to be compared with Eqs. (4), (15). We can see that this formula is similar
to the corresponding SGT formula (4) — they differ only by the constant
factor 1/2, which may be related to a different scaling of the sphere radius
in both cases.
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The predictions are dramatically different at x → 0, because in this
limit both SRT versions of the present model lead to reasonable finite value
of the velocity of initial expansion, v → c, while in the GRT cases the
initial velocity of expansion tends to be infinite. This prediction is basically
unphysical.

6. Discussion and conclusions

The shell introduced here need not perhaps be conceived as a mathe-
matical sphere, but rather as a material sphere of the finite thickness, which
is small in the scale of the radius r. The observed universe could be hid-
den within this finite thickness, see Fig. 1. Note, that within the present
approach there is no limit on the rest mass M0 of the shell universe — such
big bang explosion may occur for any rest mass.

Besides the demonstration merit, which is of a considerable value, the
present model of the universe history leads to some M0-related numbers:
R,T,H, providing scale for cosmic events. As it is the energy conservation
law, that makes ground for our considerations, we believe this shell model
gives at least a right intuition of the true behavior of the universe expansion.

The Friedman and the Israel approximations and assumptions involved in
the derivation of the GRT equations of motion lead to physically acceptable
results only for late periods of expansion, when velocities are relatively low.
As mentioned in the Introduction, if the gravitation field and matter are
treated as independent notions, the problem of singular initial velocity of
expansion may be immanent of the General Relativity Theory [4]. It is
hoped, that present approach will help formulating the theory free from the
initial infinity. The present Author leaves such a task to the GRT specialists.

Finally, let us permit ourselves for a bit of imagination. Due to its sim-
plicity and transparency, the present Special Relativity Newtonian model of
expanding universe opens door for some trial extrapolations. Its important
extension could be the sequence in time of the big bang events. E.g. one can
figure out and analyze an appearance of the “new” expanding shell of the
rest mass M1 at the time t = t1 after the “old” one of the rest mass M0 had
started at t = 0. The presence of such “inner” mass M1 slows down the ex-
pansion of the M0 shell, until possibly (if its total energy is high enough) the
shell M1 overpasses the shell M0, having at this time radial velocity higher
than the M0. The interplay between the initial energies and masses can re-
sult in quite a complicated non-monotonic behavior in time of such two-shell
system, such as an increase of the Hubble constant at a certain stage of the
universe expansion. One should also note that for such a complex system
one can still figure out the tempting variant of the “cheap” universe of zero
total energy, ε = ε0 + ε1 = 0, and in such case the shell of the mass M1

could “borrow” the energy from that of the mass M0, and vice versa. Such
suggestions deserve scrutiny within the general relativity theory, too.
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