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The progress in determining the coupling constants of mesonic chiral
Lagrangians is reviewed, with emphasis on the work performed in three
successive European Networks (Eurodaphne I and II, Euridice). Reliable
estimates of those constants are essential for making full use of next-to-next-
to-leading-order calculations in chiral perturbation theory. The precision
in the values of the strong coupling constants of O(p4) has been increasing
steadily over the years. The situation is less satisfactory in the nonleptonic
weak sector where further phenomenological input and more theoretical
work are needed. A lot of progress has recently been achieved for electro-
magnetic coupling constants occurring in radiative corrections for mesonic
processes at low energies.

PACS numbers: 11.30.Rd, 12.39.Fe

1. Introduction

Chiral low-energy constants (LECs) are the coupling constants of effec-
tive chiral Lagrangians. They are independent of the light quark masses by
construction and they describe the influence of all “heavy” degrees of freedom
that are not contained explicitly in the effective Lagrangians. The construc-
tion of effective Lagrangians is based on symmetry considerations only, so
that a lot of information is lost in going from the underlying Standard Model
to the effective theory. As a consequence, effective Lagrangians contain many
LECs, especially at higher orders in the chiral expansion. Progress in chiral
perturbation theory (CHPT) depends on realistic estimates of chiral LECs.

My task in this talk was to review the progress in determining or estimat-
ing chiral LECs since 1993 when the first Eurodaphne Network got started.
Most of this progress is in fact due to work performed in the three European
Networks Eurodaphne I, Eurodaphne II and Euridice. I will only consider
the meson sector here. The corresponding effective chiral Lagrangian is given
in Table I.
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TABLE I

Effective chiral Lagrangian in the meson sector. The numbers in brackets refer to
the number of LECs for chiral SU(3).

Lchiral order (# of LECs) Loop order

Lp2 (2) + Lodd
p4 (0) + L∆S=1

GFp2 (2) + Lem
e2p0(1) + Lemweak

G8e2p0 (1) L = 0

+ Lp4(10) + Lodd
p6 (23) + L∆S=1

G8p4 (22) + L∆S=1
G27p4 (28) L ≤ 1

+ Lem
e2p2(13) + Lemweak

G8e2p2 (14) + Lleptons

e2p
(5)

+ Lp6(90) L ≤ 2

Information on chiral LECs is obtained either from phenomenology or
with additional input from theory.

• Extraction from experiment
Some LECs are associated with terms in the Lagrangian that con-
tribute to amplitudes even in the chiral limit. They govern the mo-
mentum dependence of amplitudes and are at least in principle accessi-
ble experimentally. The other class involves chiral symmetry breaking
terms that specify the quark mass dependence of amplitudes. The re-
lated LECs are much more difficult to determine phenomenologically
but they are accessible in lattice simulations.

• Input from theory

– Large-Nc methods match CHPT with QCD by bridging the gap
MK ∼< E ∼< 1.5 GeV with resonance exchange.

– Lattice QCD.

2. Strong interactions

At lowest order in the chiral expansion, there are only two LECs B
and F . B depends on the QCD renormalization scale and always appears
multiplied by quark masses in CHPT amplitudes. The products Bmq and
the constant F can be expressed in terms of meson masses and of the pion
decay constant Fπ. Those relations involve LECs of O(p4) or higher to be
discussed subsequently.

The strong chiral Lagrangians of O(p4) contain 7 measurable LECs li for
chiral SU(2) [1] and 10 LECs Li for chiral SU(3) [2]. The current phenomeno-
logical values are based on calculations to O(p6) in most cases, sometimes
supplemented by dispersive methods. Although I restrict the discussion here
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to SU(3), the most precise determinations have been obtained for the SU(2)
LECs l1, l2, l4 by combining CHPT to O(p6) with Roy equations [3]. This
information can also be used for some of the SU(3) LECs. The relations
between the li and the Li are however only known [2] to O(p4), which is not
sufficient for the present purpose. Work in progress by the Bern group [4]
will soon provide those relations to p6 accuracy.

The present values of the renormalized SU(3) LECs Li(Mρ) are shown in
the second column of Table II. The first column contains the values originally
obtained in Ref. [2]. No drastic changes have occurred although the mean
values have generally decreased in absolute magnitude. For L1, L2, L3 the
information from ππ scattering [3] will be very useful once the relations
between the SU(3) and SU(2) LECs will be available at the p6 level [4]. The
LECs L1, . . . , L4 have also been extracted from πK scattering, based on a
dispersive analysis [6] applied to a CHPT calculation of O(p4). The results
are displayed in the third column in Table II where only experimental errors
are shown.

TABLE II

Phenomenological values and theoretical estimates for the SU(3) LECs Li(Mρ) in
units of 10−3. The first column shows the original values of Ref. [2], the second
displays the present values taken from Ref. [5] and references therein. The third
column is based on an analysis of πK scattering [6]. The fourth column contains
recent lattice results from the MILC Collaboration [7]. The fifth column shows the
resonance saturation results of Ref. [8] and the last column reproduces a systematic
estimate of resonance contributions to lowest order in 1/Nc [13]. The entries marked
with ‡ were taken as input in Ref. [8].

i O(p4) O(p6) πK Lattice Ref. [8] Ref. [13]

1 0.7 ± 0.3 0.43 ± 0.12 1.05 ± 0.12 0.6 0.9

2 1.3 ± 0.7 0.73 ± 0.12 1.32 ± 0.03 1.2 1.8

3 −4.4 ± 2.5 −2.35 ± 0.37 −4.53 ± 0.14 −3.0 −4.3

4 −0.3 ± 0.5 ∼ 0.2 0.53 ± 0.39 −0.2 ± 0.4 0 0

5 1.4 ± 0.5 0.97 ± 0.11 1.2 ± 0.4 1.4‡ 2.2

6 −0.2 ± 0.3 ∼ 0.0 0.1 ± 0.2 0 0

7 −0.4 ± 0.2 −0.31 ± 0.14 −0.3 −0.3

8 0.9 ± 0.3 0.60 ± 0.18 0.7 ± 0.2 0.9‡ 0.8

9 6.9 ± 0.7 5.93 ± 0.43 6.9‡ 7.2

10 −5.5 ± 0.7 −5.09± 0.47 −6.0 −5.4

With most of the chiral LECs of O(p4) reasonably well known, can we un-
derstand the specific values with additional theory input? Lattice QCD has
come a long way to determine some of the constants directly from QCD. The
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fourth column in Table II shows the most recent results of the MILC Collab-
oration [7] with three dynamical light (staggered) quarks. The agreement
with the phenomenological values in the second column is indeed “stagger-
ing”.

A different approach makes use of the properties of QCD at large Nc

where amplitudes can be expressed in terms of (stable) resonance exchange.
To illustrate the main features of this approach [8,9], let us consider elastic
meson–meson scattering, specializing to a channel with s ↔ u symmetry
(e.g.: π+π0 → π+π0). From axiomatic field theory (Froissart theorem)
we know that the scattering amplitude A(ν, t) satisfies a once-subtracted
forward dispersion relation in ν = (s − u)/2:

A(ν, t = 0) = A(0, 0) +
ν2

π

∞
∫

0

dν ′ 2 Abs A(ν ′, 0)

ν ′ 2 (ν2 − ν ′ 2)
. (1)

Exchange of a resonance (R) generates the absorptive part

Abs A(ν, 0) = πcRMR
4δ
(

ν2 − MR
4
)

, (2)

where the constant cR is related to the partial decay width Γ (R → ππ) in
this case. Therefore, Eq. (1) gives rise to

A(ν, 0) = A(0, 0) +
cRν2

ν2 − MR
4

. (3)

On the other hand, resonance exchange on the basis of a chiral resonance
Lagrangian produces an amplitude of the general form

AR(ν, 0) =
PR(ν2)

ν2 − MR
4

, (4)

with a polynomial PR(ν2) satisfying the on-shell condition PR(MR
4) =

cRMR
4. Decomposing the polynomial PR(ν2) as

PR(ν2) = PR(MR
4) +

(

ν2 − MR
4
)

PR(ν2) , (5)

the condition AR(ν, 0) = A(ν, 0) requires PR(ν2) to be a constant,

PR(ν2) = A(0, 0) + cR , (6)

which will not be the case for a general resonance Lagrangian. Therefore,
the short-distance constraint embodied in the once-subtracted dispersion
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relation (1) demands that in general an appropriate polynomial Pc(ν
2) be

added to AR(ν, 0):

AR(ν, 0) = Pc(ν
2) + PR(ν2) +

PR(MR
4)

ν2 − MR
4

. (7)

The counterterm polynomial Pc(ν
2) is fixed by the short-distance constraint

to satisfy

Pc(ν
2) + PR(ν2) = A(0, 0) + cR , (8)

ensuring at the same time the correct low-energy behaviour of the resonance
exchange amplitude:

AR(ν, 0) = A(ν, 0) = A(0, 0) −
cR

MR
4
ν2 + O(p8) . (9)

The coefficient of ν2 depends only on the mass and on the partial decay
width of the resonance and it defines the resonance contribution to a certain
combination of the Li.

With the proper choice of resonance fields, such counterterm polynomi-
als are not needed at O(p4) for the exchange of V (1−−), A(1++), S(0++)
and P (0−+) mesons [10], but they are unavoidable for T (2++) and A(1+−)
exchange [11, 12].

The example of elastic meson scattering raises the legitimate question:
why should one bother at all with resonance Lagrangians? It may seem like
an unnecessary detour to use the couplings of a resonance Lagrangian that
have to be corrected by short-distance constraints after all. The alternative
is to study Green functions directly with a large-Nc inspired ansatz in the
first place. The main advantages of a Lagrangian approach are first of all
that chiral symmetry is automatically guaranteed for the generated Green
functions and amplitudes and there is no need to impose chiral Ward iden-
tities. At least as important from a practical point of view is the possibility
to integrate out the resonances once and for all in the generating functional
of Green functions (always to leading order in 1/Nc), thereby generating all
LECs of a given order. Of course, the short-distance analysis still remains
to be done.

The fifth column in Table II shows the original resonance estimates of
Ref. [8]. The last column contains more recent systematic estimates of res-
onance contributions to lowest order in 1/Nc [13]. Remembering that the
renormalization scale is not fixed at leading order in 1/Nc, the agreement
between the resonance exchange contributions and the phenomenological
values in Table II is more than satisfactory. Attempts to include corrections
of next-to-leading order in 1/Nc have also been made.
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To improve the precision of LECs of O(p4), realistic estimates for some
LECs of O(p6) are also needed. Several results have already been obtained
by members of the Euridice Collaboration [14]. All possible resonance con-
tributions of the standard variety V (1−−), A(1++), S(0++), P (0−+) have
recently been presented in Ref. [15] that also contains an up-to-date bibli-
ography. The short-distance analysis remains to be done in many cases of
interest.

The odd-intrinsic-parity Lagrangian of O(p4) is given by the Wess–
Zumino–Witten Lagrangian Lodd

p4 (0) [16] in Table II. After several conflicting

results in the literature there is now a consensus that the corresponding La-
grangian of O(p6) has 23 LECs [17]. Only partial results are available for
the numerical values of those constants, but the most promising approach
is again based on a short-distance analysis with or without chiral resonance
Lagrangians [14, 18].

3. Nonleptonic weak interactions

The chiral Lagrangian of lowest order, O(GFp2), contains two LECs
g8, g27 to describe nonleptonic weak decays of kaons. Especially the value
of the octet coupling g8 is very sensitive to chiral corrections [19]. Isospin
breaking corrections are potentially important for the 27-plet coupling con-
stant g27. The present status is presented in Table III. Although different
isospin breaking contributions are sizeable the overall corrections are small
for both LECs.

TABLE III

Octet and 27-plet couplings g8, g27 at lowest order, O(GFp2), and at next-to-leading
order, O(GFp4), without (IC) and with (IB) isospin breaking [20].

IC O(GFp2) IC O(GFp4) IB O(GFp4)

g8 5.09 ± 0.01 3.67 ± 0.14 3.65 ± 0.14

g27 0.294 ± 0.001 0.297 ± 0.014 0.303± 0.014

The LECs of O(GFp4) (22 couplings Ni in the octet and 28 couplings Di

in the 27-plet Lagrangians) are much less known than their strong counter-
parts at O(p4). The most recent phenomenological analysis of those com-
binations that occur in the dominant K → 2π, 3π decays can be found in
Ref. [21]. Many more LECs appear in rare K decays and a phenomenological
update is definitely needed here.

Resonance saturation of weak LECs [22] suffers from the obvious draw-
backs that the weak resonance couplings are unknown and that short-dis-
tance constraints are missing. Nevertheless, resonance saturation provides
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at least a possible parametrization of the LECs. The most systematic ap-
proach is based on factorization (valid to leading order in 1/Nc) [20,23] but
higher-order corrections in 1/Nc may well be sizeable.

If the situation of the LECs of O(GFp4) is already unsatisfactory, even
less is known about higher orders. However, the leading (double) chiral logs
of O(GFp6) are known [24].

4. Dynamical photons

Radiative corrections at low energies involve the effective Lagrangians in
Table I with superscript “em” or “emweak”.

In the presence of photons as dynamical degrees of freedom the chiral
counting is different from the purely strong or nonleptonic weak cases. The
lowest-order Lagrangian for electromagnetic corrections to strong processes
is of O(e2p0) with a single LEC [8] that can be determined from the π+−π0

mass difference. The next-to-leading-order Lagrangian of O(e2p2) with 13
LECs Ki was constructed by Urech [25]. By convoluting pure QCD n-point
functions (n ≤ 4) with the photon propagator, sum rule representations were
derived for all the Ki [26]. Numerical estimates for the Ki are obtained by
saturating the sum rules with resonance exchange. Since the LECs Ki are
difficult to determine phenomenologically, the systematic work of Ref. [26] is
especially important for controlling radiative corrections to strong processes
at low energies.

The situation is much less favourable for electromagnetic corrections
to nonleptonic weak processes. Although the single LEC of lowest order,
O(G8e

2p0), related to the electromagnetic penguin contribution [27], is rea-
sonably well known, the 14 additional LECs of O(G8e

2p2) [28] are only
known to leading order in 1/Nc (factorization). In this way, the LECs can
be expressed in terms of Wilson coefficients, the strong LECs L5, L8 and the
electromagnetic LECs Ki [20, 23].

5. Dynamical photons and leptons

Radiative corrections for semileptonic weak decays require the incor-
poration of leptons as dynamical degrees of freedom. The leading-order

Lagrangian Lleptons
e2p

(5) in Table I contains five LECs Xi [29].

With a two-step matching procedure (Standard Model ↔ Fermi the-
ory ↔ CHPT), Descotes-Genon and Moussallam have recently established
integral representations for all the Xi [30]. One important application is in
Kl3 decays, still the best source for extracting the CKM matrix element Vus.
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As a consistency check, the isospin violating ratio

r+0 :=

(

2Γ (K+
e3(γ))M5

K0 IK0

Γ (K0
e3(γ))M5

K+ IK+

)1/2

=
|fK+π0

+ (0)|

|fK0π−

+ (0)|
(10)

has been considered [31] that depends essentially only on X1. With the
result for X1 from Ref. [30], the theoretical prediction r+0 = 1.024±0.003 is
now in perfect agreement with the most recent Kl3 data [32]. The agreement
also indicates that higher-order corrections to the theoretical prediction for
r+0 of O[(mu−md)p

4, e2 p4] behave as expected from chiral power counting.

6. Outlook

Since 1993, when Eurodaphne got started, substantial progress has been
made in the understanding of low-energy constants, both from phenomenol-
ogy and from theory (lattice QCD and large-Nc approaches).

In the strong sector, most of the machinery is now ready for a precision
determination of the LECs of O(p4). This endeavour involves also LECs of
O(p6) where we are still in the exploratory stage. We need reliable estimates
for some of those LECs to make full use of next-to-next-to-leading-order cal-
culations. In the nonleptonic sector, improvements both in phenomenology
and in theory are needed. The most impressive progress in recent years has
happened for electromagnetic LECs. As a consequence, radiative corrections
in the meson sector at low energies are now under control. Semileptonic Kl3

decays are one prime example of phenomenological relevance.

I would like to pay a special tribute and to express my gratitude to
Giulia Pancheri for having guided us successfully through three European
Networks. Thanks are also due to Maria Krawczyk and Henryk Czyż for the
efficient organization of The Final Euridice Meeting. Lack of space does not
allow for a comprehensive bibliography and I apologize to all those whose
contributions are not referred to explicitly. This work was supported in part
by the EU contract No. MRTN-CT-2006-035482 (FLAVIAnet).
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